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C O M P L E X  N U M B E R S  

I M A G I N AR Y  N U M B E R S  
 

 Powers of Imaginary Numbers ( 𝑖 ) 
 

𝑖−4 = 1 𝑖0 = 1 𝑖4 = 1 

𝑖−3 = √−1 𝑖1 = √−1 𝑖5 = √−1 

𝑖−2 = −1 𝑖2 = −1 𝑖6 = −1 

𝑖−1 = −𝑖 𝑖3 = −𝑖 𝑖7 = −𝑖 
 
 

 𝑰𝒎(𝒛) 

𝑹𝒆(𝒛) 

𝑖 

−𝑖 

−1 1 

• To find value of 𝑖𝑛, 

divide power by 4: 

▪ Remainder 0 = 1 

▪ Remainder 1 = 𝑖 

▪ Remainder 2 = −1 

▪ Remainder 3 = −𝑖 

 

 

 

 Complex Number Notation 
 

 

 

 

 

 

 
 

• 𝑰𝒎: imaginary axis (vertical axis → 𝑦-axis). 

• 𝑹𝒆: real axis (horizontal axis → 𝑥-axis). 

• 𝒛: complex number (𝑧 = 𝑥 + 𝑦𝑖). 

• 𝒛: conjugate of a complex number 

(𝑧̅ = 𝑥 − 𝑦𝑖) and is reflected in the real axis. 

• 𝒙: real components (horizontal axis). 

• 𝒚: imaginary component (vertical axis). 

• 𝒓: modulus (length) of a complex number 

and can also be represented by |𝑧|. 

• 𝜽: argument (angle that the complex number 

makes with the real axis) of complex number 

and can also be represented by arg(𝑧). 
 
 

 Rectangular (Cartesian) Form ( 𝑥 + 𝑦𝑖 ) 
 

• Convert Polar to Rectangular (Cartesian): 
 

𝒙 = 𝒓 × 𝐜𝐨𝐬(𝜽) 𝒚 = 𝒓 × 𝐬𝐢𝐧(𝜽) 
 

• Distance between two points 𝐴 and 𝐵: 
 

𝑨𝑩⃗⃗⃗⃗⃗⃗ = √(𝒙𝑩
𝟐 − 𝒙𝑨

𝟐)𝟐 + (𝒚𝑩
𝟐 − 𝒚𝑨

𝟐)𝟐 

 
 

 Polar Form ( 𝑟𝑐𝑖𝑠𝜃 ) 
 

𝒛 = 𝒓 × 𝒄𝒊𝒔(𝜽)  

• 𝒓 ∶ is the modulus of complex number. 

• 𝜽 ∶ is the argument of complex number. 

• 𝒄𝒊𝒔(𝜽) ∶ cos(𝜃) + 𝑖𝑠𝑖𝑛(𝜃) abbreviated. 
 

• Convert Rectangular (Cartesian) to Polar: 
 

𝒓 = |𝒛| = √𝒙𝟐 + 𝒚𝟐 𝜽 = 𝐭𝐚𝐧−𝟏 (
𝒚

𝒙
) 

 

• Distance between two points 𝐴 and 𝐵: 
 

𝑨𝑩⃗⃗⃗⃗⃗⃗ = √𝒓𝑨
𝟐 + 𝒓𝑩

𝟐 − 𝟐𝒓𝑨𝒓𝑩𝐜𝐨𝐬(𝜽𝑨 − 𝜽𝑩) 
 
 

 Complex Number Rules 
 

• Rules for Complex Conjugates: 
 

𝒛𝟏 ± 𝒛𝟐
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝒛𝟏̅̅̅ ± 𝒛𝟐̅̅̅ 𝒛𝟏 × 𝒛𝟐̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝒛𝟏̅̅̅ × 𝒛𝟐̅̅̅ 

�̅� = 𝒙 − 𝒚𝒊 = 𝒓𝒄𝒊𝒔(−𝜽) 

𝒛 + �̅� = 𝟐𝑹𝒆(𝒛) = 𝟐𝒙 = 𝟐𝒓𝒄𝒐𝒔𝜽 

𝒛 − �̅� = 𝟐𝒊𝑰𝒎(𝒛) = 𝟐𝒚𝒊 = 𝟐𝒓(𝒊𝒔𝒊𝒏𝜽) 

𝒛 × �̅� = 𝒙𝟐 + 𝒚𝟐 = |𝒛|𝟐 = 𝒓𝟐 

𝒛

�̅�
= (

𝒙𝟐 − 𝒚𝟐

𝒙𝟐 + 𝒚𝟐
) + 𝒊 (

𝟐𝒙𝒚

𝒙𝟐 + 𝒚𝟐
) = 𝒄𝒊𝒔(𝟐𝜽) 

 

• Rules for Arguments of Complex Numbers: 
 

𝐚𝐫𝐠(𝒛 × 𝒘) = 𝐚𝐫𝐠(𝒛) + 𝐚𝐫𝐠(𝒘) 

𝐚𝐫𝐠(𝒛 ÷ 𝒘) = 𝐚𝐫𝐠(𝒛) − 𝐚𝐫𝐠(𝒘) 
 

• Rules for Moduli of Complex Numbers: 
 

|𝒛 × 𝒘| = |𝒛| × |𝒘| |
𝒛

𝒘
| =

|𝒛|

|𝒘|
 

 

• Simplifying Complex Numbers: 
 

 

𝒛−𝟏 =
𝟏

𝒛
=

𝟏

𝒙 + 𝒚𝒊
×

𝒙 − 𝒚𝒊

𝒙 − 𝒚𝒊
=

𝒙 − 𝒚𝒊

𝒙𝟐 + 𝒚𝟐
=

�̅�

|𝒛|
 

𝒛

𝒘
=

𝒂 + 𝒃𝒊

𝒄 + 𝒅𝒊
=

𝒂 + 𝒃𝒊

𝒄 + 𝒅𝒊
×

𝒄 − 𝒅𝒊

𝒄 − 𝒅𝒊
=

𝒛 × 𝒘

|𝒘|𝟐
 

 

 

C O M P L E X  N U M B E R S  

𝑰𝒎(𝒛) 

𝑹𝒆(𝒛) 0 

𝑦 

−𝑦 

𝑥 
𝜃 
𝜃 

𝑟 

𝑟 

𝑧 = 𝑥 + 𝑦𝑖 

𝑧̅ = 𝑥 − 𝑦𝑖 

C O M P L E X  N U M B E R  AL G E B R A  
 

 Complex Number Algebra Examples 
 

(Q1) Express 
4+3𝑖

2−𝑖
 in cartesian form: 

 

4 + 3𝑖

2 − 𝑖
=

4 + 3𝑖

2 − 𝑖
×

2 + 𝑖

2 + 𝑖
=

(4 + 3𝑖) × (2 + 𝑖)

(2 − 𝑖) × (2 + 𝑖)
 

=
8 + 4𝑖 + 6𝑖 + 3𝑖2

4 − 𝑖2
=

5 + 10𝑖

5
= 𝟏 + 𝟐𝒊 

 

(Q2) Express (−√3 + 𝑖)(4 + 4𝑖) in polar form: 
 

▪ Converting (−√3 + 𝑖) to polar form: 

𝑟 = |𝑧| = √(−√3)
2
+ 12 = √3 + 1 = √4 = 2 

θ = arg(𝑧) = 𝑡𝑎𝑛−1 (
1

−√3
) = −

𝜋

6
 but as 𝑧 is in 

the second quadrant, arg(𝑧) = −
𝜋

6
+ 𝜋 =

5𝜋

6
 

 

► Topic Is Continued In Next Column ◄ 

C O M P L E X  N U M B E R  AL G E B R A  
 

 Complex Number Algebra Examples 
 

(Q2) Express (−√3 + 𝑖)(4 + 4𝑖) in polar form: 
 

▪ Converting (4 + 4𝑖) to polar form: 

𝑟 = |𝑧| = √42 + 42 = √32 = √16√2 = 4√2 

θ = arg(𝑧) = 𝑡𝑎𝑛−1 (
4

4
) =

𝜋

4
, 𝑧 is in first quadrant. 

▪ Multiplying two complex numbers together: 

[2𝑐𝑖𝑠 (
5𝜋

6
)] × [4√2𝑐𝑖𝑠 (

𝜋

4
)] = 8√2𝑐𝑖𝑠 (

5𝜋

6
+

𝜋

4
)  

= 8√2𝑐𝑖𝑠 (
26𝜋

24
) = 𝟖√𝟐𝒄𝒊𝒔 (

𝟏𝟑𝝅

𝟏𝟐
)  

 

(Q3) Determine all roots, real and complex, of 

the equation 𝑓(𝑧) = 𝑧3 − 4𝑧2 + 𝑧 + 26: 
 

Substitute different values of 𝑧 until 𝑓(𝑧) = 0: 

𝑓(0) = 26 ≠ 0, 𝑓(1) = 24 ≠ 0, 𝑓(−1) = 20 ≠ 0, 
𝑓(2) = 20 ≠ 0 → these are not factors 

𝑓(−2) = 0 hence (𝑧 + 2) is a factor  

∴ 𝑧3 − 4𝑧2 + 𝑧 + 26 = (𝑧 + 2)(𝑧2 + 𝑏𝑧 + 𝑐) 
Using polynomial long division (on page 2): 

𝑝𝑟𝑜𝑝𝐹𝑟𝑎𝑐 (
𝑧3 − 4𝑧2 + 𝑧 + 26

𝑧 + 2
) = 𝑧2 − 6𝑧 + 13 

Find roots of 𝑧2 − 6𝑧 + 13 by quadratic formula: 

𝑧 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
=

6 ± √36 − 4(1)(13)

2(1)
 

=
6 ± √−16

2
=

6 ± √16√−1

2
=

6 ± 4𝑖

2
= 3 ± 2𝑖 

Hence roots are 𝑧 = −𝟐, 𝟑 + 𝟐𝒊, 𝟑 − 𝟐𝒊 
 

(Q4) Find all the complex numbers that satisfy 

the equation |𝑧|2 − 𝑖𝑧 = 36 + 4𝑖: 

▪ Let 𝑧 = 𝑥 + 𝑦𝑖 and hence: 
|(𝑥 + 𝑦𝑖)|2 − 𝑖(𝑥 + 𝑦𝑖) = 36 + 4𝑖 

(√𝑥2 + 𝑦2)
2
− 𝑥𝑖 − 𝑦𝑖2 = 36 + 4𝑖 

𝑥2 + 𝑦2 − 𝑥𝑖 + 𝑦 − 36 − 4𝑖 = 0 
▪ Equating real and imaginary parts: 

𝑥2 + 𝑦2 + 𝑦 − 36 = 0 and −𝑥 − 4 = 0 

Hence, 𝑥 = −4 and (−4)2 + 𝑦2 + 𝑦 − 36 = 0 
16 + 𝑦2 + 𝑦 − 36 = 0 

𝑦2 + 𝑦 − 20 = 0 and (𝑦 + 5)(𝑦 − 4) = 0 

Giving 𝑦 = −5, 4 hence 𝑧 = −𝟒 − 𝟓𝒊, −𝟒 + 𝟒𝒊 
 

(Q5) 𝑎 & 𝑏 are real & 𝑎 ≠ 𝑏. If 𝑧 = 𝑥 + 𝑦𝑖 and 

|𝑧 − 𝑎|2 − |𝑧 − 𝑏|2 = 1, prove 𝑥 =
𝑎+𝑏

2
+

1

2(𝑏−𝑎)
: 

|(𝑥 + 𝑦𝑖) − 𝑎|2 − |(𝑥 + 𝑦𝑖) − 𝑏|2 = 1 
|(𝑥 − 𝑎) + 𝑦𝑖|2 − |(𝑥 − 𝑏) + 𝑦𝑖|2 = 1 
(𝑥 − 𝑎)2 + 𝑦2 − [(𝑥 − 𝑏)2 + 𝑦2] = 1 
(𝑥 − 𝑎)2 − (𝑥 − 𝑏)2 = 1 
𝑥2 − 2𝑎𝑥 + 𝑎2 − 𝑥2 + 2𝑏𝑥 − 𝑏2 = 1 
(2𝑏 − 2𝑎)𝑥 + 𝑎2 − 𝑏2 = 1 

𝑥 =
1−𝑎2+𝑏2

2𝑏−2𝑎
=

𝒂+𝒃

𝟐
+

𝟏

𝟐(𝒃−𝒂)
→ 𝐿𝐻𝑆 = 𝑅𝐻𝑆,𝑄𝐸𝐷  

 

*Expand 

LHS and 

simplify 

 

*Expand 

and simplify 

LHS and 

RHS 

 

 

 

 De Moivre’s Theorem Rules 
 

(𝒓𝒄𝒊𝒔𝜽)𝒏 = 𝒓𝒏𝐜𝐨𝐬(𝒏𝜽) + 𝒓𝒏𝒊𝒔𝒊𝒏(𝒏𝜽) 

𝒛𝒏 = |𝒛|𝒏𝒄𝒊𝒔(𝒏𝜽) 

𝒛
𝟏

𝒏 = |𝒛|𝟏/𝒏 [𝒄𝒊𝒔 (
𝜽+𝟐𝝅𝒌

𝒏
)] for an integer 𝒌 

 

• Finding the complex 𝑛𝑡ℎ roots of 𝑧: 
 

Step 
1 

Convert 𝑧 to polar form: 𝑧 = 𝑟(𝑐𝑖𝑠𝜃) 

𝑟 = |𝑧| = √𝑥2 + 𝑦2, 𝜃 = tan−1(𝑦/𝑥) 

Step  
2 

𝑧 will have 𝑛 different 𝑛𝑡ℎ roots 

(i.e. 𝑛 = 2 has 2 roots etc.). 

Step 
3 

All these roots will have the same 

modulus |𝑧|1/𝑛 = 𝑟1/𝑛. 

Step 
4 

All roots have different arguments: 
𝜃

𝑛
,
𝜃+(1×2𝜋)

𝑛
,
𝜃+(2×2𝜋)

𝑛
, … ,

𝜃+((𝑛−1)×2𝜋)

𝑛
  

 
 

 De Moivre’s Theorem Examples 
 

(Q1) Find 𝑧10 given that 𝑧 = 1 − 𝑖 

𝑟 = |𝑧| = √12 + (−1)2 = √2  and arg(𝑧) = −
𝜋

4
 

Hence, 𝑧 in polar form is 𝑧 = √2𝑐𝑖𝑠 (−
𝜋

4
) 

𝑧10 = (√2)
10

𝑐𝑖𝑠 (10 × −
𝜋

4
) = 25𝑐𝑖𝑠 (−

10𝜋

4
) 

= 32𝑐𝑖𝑠 (−
𝜋

2
) = 32[0 + 𝑖(−1)] = −𝟑𝟐𝒊 

(Q2) Use De Moivre to find smallest positive 

angle 𝜃 for which: (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)15 = −𝑖: 

cos(15𝜃) + 𝑖𝑠𝑖𝑛(15𝜃) = 0 − 𝑖 
▪ Equating real and imaginary parts: 

0 = cos(15𝜃) and −1 = 𝑠𝑖𝑛(15𝜃) 

▪ Considering both conditions, 15𝜃 =
3𝜋

2
 

Hence, 𝜃 =
3𝜋

30
=

𝝅

𝟏𝟎
 is smallest positive angle. 

(Q3) By expanding (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)3 and 

simplifying, show that 𝑐𝑜𝑠3𝜃 =
1

4
𝑐𝑜𝑠3𝜃 +

3

4
𝑐𝑜𝑠𝜃 

▪ Expand the brackets of (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)3: 

cos3𝜃3cos2𝜃(𝑖𝑠𝑖𝑛𝜃)3 cos(𝑖𝑠𝑖𝑛𝜃)2 (𝑖𝑠𝑖𝑛𝜃)3 

cos3𝜃 + 3𝑖𝑐𝑜𝑠2𝜃𝑠𝑖𝑛𝜃 − 3𝑐𝑜𝑠𝜃 sin2𝜃 −𝑖sin3𝜃 
▪ Simplify (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)3 using De Moivre: 

(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)3 = 𝑐𝑜𝑠3𝜃 + 𝑖𝑠𝑖𝑛3𝜃 
▪ Equating real parts from both equations: 

 

cos3 𝜃 − 3𝑐𝑜𝑠𝜃 sin2 𝜃 = 𝑐𝑜𝑠3𝜃 
cos3 𝜃 = 𝑐𝑜𝑠3𝜃 + 3𝑐𝑜𝑠𝜃 (1 − cos2 𝜃) 
cos3 𝜃 = 𝑐𝑜𝑠3𝜃 + 3𝑐𝑜𝑠𝜃−3cos3 𝜃 
4 cos3 𝜃 = 𝑐𝑜𝑠3𝜃 + 3𝑐𝑜𝑠𝜃 

cos3 𝜃 =
1

4
𝑐𝑜𝑠3𝜃 +

3

4
𝑐𝑜𝑠𝜃 → 𝐿𝐻𝑆 = 𝑅𝐻𝑆, 𝑄𝐸𝐷  

(Q4) Simplify (𝑐𝑖𝑠 (
3𝜋

4
))

−4

 

𝑐𝑖𝑠(−3𝜋) × (−
4
4)

(𝑐𝑖𝑠(2𝜋))
1
2

 

 

► Topic Is Continued In Next Column ◄ 
 
 

D E  M O V I R E ’ S  T H E O R E M  

= 
= 

+ + + 

*Rearrange 

and Solve 

 

 

 

 De Moivre’s Theorem Examples 
 

(Q4) Find and graph all the complex fourth 

roots of −16 on an argand plane. 

𝑟 = |−16| = √(−16)2 = 16  and arg(−16) = 𝜋 

Hence, −16 in polar form is 𝑧 = 16𝑐𝑖𝑠(𝜋) 
We need 4 roots hence 𝑛 = 4 and the roots are: 

𝑧1 = 16
1

4𝑐𝑖𝑠 (
𝜋

4
) = 𝟐𝒄𝒊𝒔 (

𝝅

𝟒
)  

𝑧2 = 16
1

4𝑐𝑖𝑠 (
𝜋+(1×2𝜋)

4
)  

∴ 𝑧2 = 𝟐𝒄𝒊𝒔 (
𝟑𝝅

𝟒
)  

𝑧3 = 16
1

4𝑐𝑖𝑠 (
𝜋+(2×2𝜋)

4
)  

∴ 𝑧3 = 𝟐𝒄𝒊𝒔 (
𝟓𝝅

𝟒
)   

𝑧4 = 16
1

4𝑐𝑖𝑠 (
𝜋+(3×2𝜋)

4
)  

∴ 𝑧4 = 𝟐𝒄𝒊𝒔 (
𝟕𝝅

𝟒
)   

(Q5) One of the solutions of 𝑧3 = 𝑎, for some 

constant 𝑎, is 𝑧 = 4√3 − 4𝑖. Determine all 

other solutions in Cartesian form. 

𝑟1/3 = |4√3 − 4𝑖| = √(4√3)
2
+ (−4)2 = 8 and 

arg(4√3 − 4𝑖) = tan−1 (
4

−4√3
) = −

𝜋

6
 

Hence, 4√3 − 4𝑖 in polar form is 𝑧 = 8𝑐𝑖𝑠 (−
𝜋

6
) 

𝑧1 = 8𝑐𝑖𝑠 (−
𝜋

6
) = 𝟒√𝟑 − 𝟒𝒊  

𝑧2 = 8𝑐𝑖𝑠 (−
𝜋

6
+

2𝜋

3
) = 8𝑐𝑖𝑠 (

3𝜋

6
) = 𝟖𝒊  

𝑧3 = 8𝑐𝑖𝑠 (−
𝜋

6
+

4𝜋

3
) = 8𝑐𝑖𝑠 (

7𝜋

6
) = −𝟒√𝟑 − 𝟒𝒊  

 

 

D E  M O V I R E ’ S  T H E O R E M  

*All roots are equally 

spaced out by an angle 

of  
2𝜋

𝑛
=

2𝜋

4
=

𝜋

2
 

−2 

−2𝑖 

2𝑖 

2 

𝑧1 𝑧2 

𝑧3 𝑧4 

𝑰𝒎(𝒛) 

𝑹𝒆(𝒛) 

*𝑛 = 3 ∴ 3 roots 

 

× (
1 + 𝑖

1 − 𝑖
)

2

÷ √𝑐𝑖𝑠(2𝜋) 

=
−1 × 𝑐𝑖𝑠(−3𝜋)

𝑐𝑖𝑠(𝜋)
 

= −𝑐𝑖𝑠(−3𝜋 − 𝜋) 
 

= −𝑐𝑖𝑠(0) 

= −𝟏 

 

 

A R G A N D  P L A N E  G R A P H S  
 

 Argand Plane Transformations 
 

Variable Transformation Description 

𝒛 × 𝒊 
Rotates a complex number by 
90º anti-clockwise. 

𝒛 × 𝒊𝒏 
Rotates a complex number by 
(𝑛𝜋/2) anti-clockwise. 

𝒛 × 𝒏 
Increases modulus of complex 
number by scale factor 𝑛. 

𝑹𝒆(𝒛)
× −𝟏 

Reflects a complex number in 

the 𝑦-axis (impacts 𝑅𝑒(𝑧) only). 

𝑰𝒎(𝒛)
× −𝟏 

Reflects a complex number in 
the 𝑥-axis (impacts 𝐼𝑚(𝑧) only). 

 
 

 Graphing Complex Numbers 
 

(Q1) Sketch the following in the argand plane: 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

−1 

√3 

−√3 

−2 

−2 

3 1 

1 

(Q1a) |𝑧 − 2𝑖| ≤ |𝑧| 
 

|𝑥 + (𝑦 − 2)𝑖| ≤ |𝑥2 + 𝑦2| 
𝑥2 + (𝑦 − 2)2 ≤ 𝑥2 + 𝑦2 

𝑥2 + 𝑦2 − 4𝑦 + 4 ≤ 𝑥2 + 𝑦2 
4 − 4𝑦 ≤ 0 

−4𝑦 ≤ −4 

∴ 𝒚 ≥ 𝟏 

 (Q1b) |𝑧 + 2 + 2𝑖| = |𝑧 − 3 − 𝑖| 
 

|𝑧 − (−2 − 2𝑖)| = |𝑧 − (3 + 𝑖)| 
Connect the co-ords (3,1) 
and (−2, −2) with a line. 
Then draw a perpendicular 

bisector as a line (i.e. 90° 
and cuts line equally in half). 
 (Q1c) 𝑧2 − 4𝑧 + 1 = −(6𝑧 + 3) 
 

Rearrange: 𝑧2 + 2𝑧 + 4 = 0 
Use quadratic formula 
to solve for when 𝑧 = 0: 
𝑎 = 1, 𝑏 = 2, 𝑐 = 4 

∴ 𝑧 = −𝟏 + √𝟑𝒊, −𝟏 − √𝟑𝒊 
Plot solution as separate co-ords. 

(Q1d) −
𝜋

3
< 𝑎𝑟𝑔(𝑖𝑧) <

𝜋

3
 

 

𝑖𝑧 = 𝑖 × (𝑥 + 𝑦𝑖) 
= 𝑥𝑖 + 𝑦𝑖2 = 𝒙𝒊 − 𝒚 

∴ 𝑖𝑧 rotates a complex 
number by 90º anti-
clockwise. Hence, reverse 
the effect in the solution. 
 

𝜃 =
𝜋

3
 

𝜃 𝜃 

(Q1e) 2 < |𝑧 − 1| ≤ 4 
 

2 < |𝑧 − (1 + 0𝑖)| ≤ 4 

Hence draw a point at (𝟏, 𝟎) 
and draw a doughnut with 
outer radius of 𝟒 and inner 

radius of 𝟐. Shade inner region 
with inner radius dashed and 
outer radius solid due to inequality. 
 

F U N C T I O N S  

T Y P E S  O F  F U N C T I O N S  
 

 Definition of a Function 
 

• A function satisfies any of the following: 
 

Passes Vertical Line Test  

If all possible vertical lines 
drawn at all points along the 
curve cut the curve once, it 
passes the vertical line test. 

 

 

One-to-One  Many-to-One 

 
 
 

 

 
 
 
 
 

 

−1 

0 

1 

 

0 

1 

 

 𝑦 = 𝑥2 

 

𝒙 

 

𝒚 

 

0 

1 

2 

 

0 

3 

6 

 𝑦 = 3𝑥 

 

𝒚 

 
𝒙 

 

 

 Definition of a Non-Function 
 

• A non-function (a.k.a. a relation) satisfies: 
 

Fails Vertical Line Test  

If all vertical lines drawn at all 
points along the curve cut the 
curve more than once, it fails 

the vertical line test. 

 

 

Many-to-One  

 
 
 

 
 

 

 

T Y P E S  N O N - F U N C T I O N S  

−2 

2 

 

4 

 

𝑦2 = 𝑥 

 

𝑦2 = 𝑥 → 𝑦 = ±√𝑥 

𝑦 = √𝑥 and 𝑦 = −√𝑥 

i.e. two functions 

plotted together 

 

𝒙 

 

𝒚 

 

C O M P O S I T E  F U N C T I O N S  
 

 Composite Function Notation ( 𝑓 ∘ 𝑔(𝑥) ) 
 

• Applies one function to the results of another. 
 

𝒇 ∘ 𝒈(𝒙) = 𝒇(𝒈(𝒙)) 
 
 

 Composite Function Domain and Range 
 

Step 
1 

Find the natural domain of the inside 
function of 𝑓 ∘ 𝑔(𝑥), 𝑔(𝑥). 

Step  
2 

Determine the composite function 
𝑓 ∘ 𝑔(𝑥) and determine its domain. 

Step 
3 

Domain of 𝑓 ∘ 𝑔(𝑥) is intersection of 
the domains found in steps 1 and 2. 

Step 
4 

Analyse critical points from domain 

to find the range of 𝑓 ∘ 𝑔(𝑥): 
• Critical points that are ≤,≥ 

substitute directly into 𝑓 ∘ 𝑔(𝑥). 
• For critical points that are ≠,<,> 

substitute a number that’s slightly 
higher and lower into 𝑓 ∘ 𝑔(𝑥). 

• Substitute ∞,−∞ into 𝑓 ∘ 𝑔(𝑥). 
 
 

 Complex Number Algebra Examples 
 

(Q1) Let 𝑓(𝑥) = 𝑙𝑛(𝑥2 + 1) and 𝑔(𝑥) = 2√𝑥: 
 

(Q1a) Find the composite function 𝑓 ∘ 𝑔(𝑥): 

= 𝑓(2√𝑥) = 𝑙𝑛 [(2√𝑥)
2
+ 1] = 𝐥𝐧(𝟒𝒙 + 𝟏) 

 

(Q1b) Find 𝑔(𝑥) given 𝑓 ∘ 𝑔(𝑥) and 𝑓(𝑥): 
 

𝑓(𝑔(𝑥)) → ln(4𝑥 + 1) = 𝑙𝑛(𝑔(𝑥)2 + 1)  

Hence 𝑔(𝑥)2 = 4𝑥 and 𝑔(𝑥) = √4𝑥 = 𝟐√𝒙 
 

(Q1c) Find 𝑓(𝑥) given 𝑓 ∘ 𝑔(𝑥) and 𝑔(𝑥) 

𝑔(𝑥) = 2√𝑥 = 𝑢, solve 2√𝑥 = 𝑢 for 𝑥: 𝑥 = (
𝑢

2
)

2

  

𝑓(𝑔(𝑥)) = ln(4𝑥 + 1) = ln[4(𝑢/2)2 + 1]   

= ln(𝑢2 + 1) ∴ 𝑓(𝑢) = ln(𝑢2 + 1) 

Change 𝑢to 𝑥: 𝑓(𝑥) = 𝐥𝐧(𝒙𝟐 + 𝟏) 
 

(Q2) Let 𝑓(𝑥) = 1 + √𝑥 − 2 and 𝑔(𝑥) =
1

𝑥−5
, find 

the domain and range of 𝑔 ∘ 𝑓(𝑥). 
 

𝑔 ∘ 𝑓(𝑥) = 𝑔(𝑓(𝑥)) =
1

𝑓(𝑥)−5
=

1

1+√𝑥−2−5
=

1

√𝑥−2−4
  

▪ Finding domain of inside function 𝑓(𝑥): 

Domain of 𝑓(𝑥) = {𝑥 ∈ ℝ: 𝑥 ≥ 2} 

▪ Finding domain of 𝑔 ∘ 𝑓(𝑥): 

Solve √𝑥 − 2 − 4 ≠ 0,𝑥 − 2 ≠ 16, 𝑥 ≠ 18  

Natural domain of 𝑔 ∘ 𝑓(𝑥) = {𝒙 ∈ ℝ: 𝒙 ≠ 𝟏𝟖} 

▪ Finding intersection of both domains: 

Domain of 𝑔 ∘ 𝑓(𝑥) = {𝑥 ∈ ℝ: 𝑥 ≥ 2, 𝑥 ≠ 18} 
▪ Analysing critical points from the domain: 

Test at point 𝑥 = 2 as𝑥 ≠ 18 𝑔 ∘ 𝑓(2) = −0.25 

𝑔 ∘ 𝑓(17.999) → −∞ and𝑔 ∘ 𝑓(18.001) → ∞ 

𝑔 ∘ 𝑓(−∞) = 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 and𝑔 ∘ 𝑓(∞) → 0 

Range of 𝑔 ∘ 𝑓(𝑥) = {𝒚 ∈ ℝ:𝒚 ≤ −𝟎. 𝟐𝟓, 𝒚 > 𝟎} 
 

 

 

 Inverse Functions ( 𝑓−1(𝑥) ) 
 

 

 

    

▪ When inverse functions are 

plotted together, they are 

symmetrical about a 45⁰ line 

(i.e. the function 𝑦 = 𝑥). 
 

 

 

 

    

 

 

    

 

 

    

 

 

    

 

 

    

 

Domain 𝒇(𝒙) = Range 𝒇−𝟏(𝒙) 

Range 𝒇(𝒙) = Domain 𝒇−𝟏(𝒙) 

𝒇 ∘ 𝒇−𝟏(𝒙) = 𝒇(𝒇−𝟏(𝒙)) = 𝒙 
 
 

 Determining the Inverse of a Function 
 

Step 
1 

Rearrange the function to make 𝑥 
the subject instead of 𝑦. 

Step  
2 

Swap the variables 𝑥 and 𝑦, this is 
the inverse function, 𝑓−1(𝑥). 

 
 

 Inverse Function Examples 
 

(Q1) Determine 𝑓−1(𝑥) of 𝑓(𝑥) = 𝑙𝑛(𝑥 + 3) + 1 
 

𝑓(𝑥) = 𝑦 = ln(𝑥 + 3) + 1 → 𝑦 − 1 = ln(𝑥 + 3) 

𝑒𝑦−1 = 𝑥 + 3 → 𝑒𝑦−1 − 3 = 𝑥 → 𝒚 = 𝒆𝒙−𝟏 − 𝟑 
 

(Q2) Prove that 𝑓(𝑥) = 2𝑥 − 3 and 

 𝑔(𝑥) = 0.5𝑥 + 1.5 are inverse functions. 
 

𝑓(𝑔(𝑥)) = 2(0.5𝑥 + 1.5) − 3 = 𝑥 + 3 − 3 = 𝒙 

 

I N V E R S E  F U N C T I O N S  

*Dividing by a negative 

reverses the inequality 

 

1 

𝑹𝒆(𝒛) 

𝑹𝒆(𝒛) 

𝑹𝒆(𝒛) 

𝑰𝒎(𝒛) 

𝑰𝒎(𝒛) 

𝑰𝒎(𝒛) 

𝑰𝒎(𝒛) 

𝑰𝒎(𝒛) 

𝑹𝒆(𝒛) 

𝑹𝒆(𝒛) 
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R E C I P R O C AL  F U N C T I O N S  
 

 Sketching Reciprocal Functions 
 

• Sketching the graph 1/𝑓(𝑥) given 𝑓(𝑥): 

▪ Any 𝑥 - intercepts on the graph of 𝑓(𝑥) are 

vertical asymptotes on 1/𝑓(𝑥). 

▪ Any intersections that 𝑓(𝑥) has with 𝑦 = 1 

or 𝑦 = −1 are points on 1/𝑓(𝑥). 

▪ As 𝑓(𝑥) approaches ∞ or −∞ it moves 

toward the 𝑥 - axis on 1/𝑓(𝑥). 
 
 

 Reciprocal Functions Examples 
 

(Q1) Sketch the function 𝑦 = 1/(𝑥2 − 2)  

𝑓(𝑥) = 𝑥2 − 2 hence 1/𝑓(𝑥) = 1/(𝑥2 − 2)  
 

 
 
 
 
 
 
 

(Q2) Sketch the function 𝑦 = 1/ln(𝑥 + 4) 

𝑓(𝑥) = ln(𝑥 + 4) hence 1/𝑓(𝑥) =
1

ln(𝑥+4)
 

 
 
 
 
 
 
 
 
 

 
 
 
 

𝒚 

𝒙 

𝑓(𝑥) 

 

1/𝑓(𝑥) 

 

𝒚 

𝒙 

𝑓(𝑥) 

 

1/𝑓(𝑥) 

 

A B S O L U T E  V AL U E  F U N C T I O N S  
 

 Absolute Value Functions and Notation 
 

|𝒙| = {
𝒙 𝒙 ≥ 𝟎
−𝒙 𝒙 < 𝟎

 

 

|𝒇(𝒙)| 
Any points below the 𝑥 - axis are 

reflected in 𝑥 - axis and any points 
above the 𝑥 - axis aren’t changed. 

𝒇(|𝒙|) 
Reflects functions that can’t have 
negative 𝑥 values (e.g. square root 

functions) in the 𝑦 – axis. 
 
 

 Absolute Value Function Examples 
 

(Q1) If 𝑓(𝑥) = 𝑥2 − 3, 

sketch function |𝑓(𝑥)| 
 

 

 

 
 

(Q3) Sketch 𝑦 = |𝑥 + 1| − |𝑥 − 2|: 

Solve each individual absolute value brackets 

for when it equals each individual absolute 

value brackets for when it equals 0: 

|𝑥 + 1| = 0, 𝑥 = −1 and |𝑥 − 2| = 0, 𝑥 = 2 

Hence, 𝑥 = −1,2 are the critical values. 

Create a 𝑥/𝑦 table with each critical value 

above. Insert columns between each critical 

value and choose a random number between 

them. Solve the entire table for 𝑦:  
 

𝒙 -2 -1 0 2 3 

𝒚 -3 -3 -1 3 3 
 

 
 
 

 Absolute Value Algebra Example 
 

(Q1) If 𝑓(𝑥) = 𝑥 + 2 and 𝑔(𝑥) = (𝑥 + 1)2 − 5, 

solve the equation |𝑓(𝑥)| = |𝑔(𝑥)|: 
|𝑔(𝑥)| = |𝑥2 + 2𝑥 − 4| = |𝑥 + 2| = |𝑓(𝑥)| 
▪ Solve for when absolute value is positive: 

𝑥2 + 2𝑥 − 4 = 𝑥 + 2 → 𝑥2 + 𝑥 − 6 = 0 

(𝑥 + 3)(𝑥 − 2) = 0 → 𝑥 = −3,2 

▪ Solve for when absolute value is negative:  

𝑥2 + 2𝑥 − 4 = −𝑥 − 2 → 𝑥2 + 3𝑥 − 2 = 0 

𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
=

−3±√9+8

2
=

−3±√17

2
= 0.56,−3.56  

∴ 𝑥 is union of answers 𝑥 = −𝟑, 𝟐, 𝟎. 𝟓𝟔,−𝟑. 𝟓𝟔 

 

 

𝒚 

𝒙 

(Q2) If 𝑓(𝑥) = √𝑥 − 2, 

sketch function 𝑓(|𝑥|) 
 𝒚 

𝒙 

2 −1 

𝒚 

𝒙 

*−1 & 2 critical values 

 

 

 Polynomial Long Division 
 

Step 
1 

Divide highest order polynomial in 
the divisor and dividend and write 
as the first term in the quotient. 
Then multiply this by the divisor. 

Step  
2 

Subtract two equations from each 
other, writing answer underneath. 

Step 
3 

Repeat steps 1 and 2 until a single 
number remains. 

 
 

 ClassPad Main App Long Division 
 

𝑨𝒄𝒕𝒊𝒐𝒏 → 𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 → 𝒑𝒓𝒐𝒑𝑭𝒓𝒂𝒄 (
𝑨

𝑩
) 

 
 

 Polynomial Long Division Example 
 

(Q1) Determine 
3𝑥3−5𝑥2+10𝑥−3

3𝑥+1
 

 

P O L Y N O M I A L  L O N G  D I V I S I O N  

3𝑥3 + 1𝑥2 

 

) 
𝑥2 − 2𝑥 + 4 

3𝑥3 − 5𝑥2 + 10𝑥 − 3 

−6𝑥2 + 10𝑥 

− 

− 

−7 

−6𝑥2 − 2𝑥 

+12𝑥 − 3 

+12𝑥 + 4 − 

3𝑥3 − 5𝑥2 + 10𝑥 − 3

3𝑥 + 1
= 𝒙𝟐 − 𝟐𝒙 + 𝟒 −

𝟕

𝟑𝒙 + 𝟏
 

3𝑥 + 1 

*3𝑥3 ÷ 3𝑥 = 𝑥2 

This is first term 

in quotient. 
 

*𝑥2(3𝑥 + 1) 

Write under 

and subtract. 
 

*Remainder −7 

(fraction with 

dividend as 

denominator). 

 

 

 

POLYNOMIAL FRACTION FUNCTIONS 
 

 Sketching Polynomials Examples 
 

(Q1) Sketch 𝑦 = (−3 + 4𝑥 − 𝑥2)/(𝑥2 − 𝑥)  

=
−(𝑥2−4𝑥+3)

𝑥(𝑥−1)
=

−(𝑥−3)(𝑥−1)

𝑥(𝑥−1)
=

−(𝑥−3)

𝑥
=

3−𝑥

𝑥
=

𝟑

𝒙
− 𝟏  

▪ Function vertical 

asymptote at 𝑥 = 0 

▪ Function horizontal 

asymptote at 𝑦 = −1 
 

(Q2) Sketch 𝑦 = (𝑥2 − 5𝑥 + 6)/(𝑥 + 1) 

Long division: 𝑝𝑟𝑜𝑝𝐹𝑟𝑎𝑐
𝑥2−5𝑥+6

𝑥+1
= 𝑥 − 6 +

12

𝑥+1
  

▪ Function oblique 

asymptote at 𝑦 = 𝑥 − 6 

(equal to the quotient 

without the remainder) 

▪ Function vertical 

asymptote @ 𝑥 = −1 

 

𝒚 

𝒙 

𝒚 

𝒙 

P A R T I AL  F R AC T I O N S  
 

 Partial Fraction Decomposition 
 

Factor in 
Denominator 

Term in Partial Fraction 
Decomposition 

𝑎𝑥 + 𝑏 
𝐴

𝑎𝑥 + 𝑏
 

(𝑎𝑥 + 𝑏)𝑘 
𝐴1

𝑎𝑥 + 𝑏
+ ⋯+

𝐴𝑘

(𝑎𝑥 + 𝑏)𝑘
 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 
𝐴𝑥 + 𝐵

𝑎𝑥2 + 𝑏𝑥 + 𝑐
 

 
 

 Partial Fraction Examples 
 

(Q1) Simplify (3𝑥 + 11)/(𝑥2 − 𝑥 − 6) 
3𝑥 + 11

𝑥2 − 𝑥 − 6
=

3𝑥 + 11

(𝑥 − 3)(𝑥 + 2)
=

𝐴

𝑥 − 3
+

𝐵

𝑥 + 2
 

3𝑥 + 11

𝑥2 − 𝑥 − 6
=

𝐴(𝑥 + 2) + 𝐵(𝑥 − 3)

(𝑥 − 3)(𝑥 + 2)
 

3𝑥 + 11 = 𝐴(𝑥 + 2) + 𝐵(𝑥 − 3) 

3𝑥 + 11 = 𝐴𝑥 + 2𝐴 + 𝐵𝑥 − 3𝐵 

Hence, 3 = 𝐴 + 𝐵 and 11 = 2𝐴 − 3𝐵 

Simultaneously solve: 𝐴 = 𝟒,𝐵 = −𝟏 
 

(Q2) Simplify (𝑥2 − 29𝑥 + 5)/(𝑥 − 4)2(𝑥2 + 3) 

𝑥2 − 29𝑥 + 5

(𝑥 − 4)2(𝑥2 + 3)
=

𝐴

𝑥 − 4
+

𝐵

(𝑥 − 4)2
+

𝐶𝑥 + 𝐷

𝑥2 + 3
 

𝑥2 − 29𝑥 + 5 = 𝐴(𝑥 − 4)(𝑥2 + 3) + 

𝐵(𝑥2 + 3) + (𝐶𝑥 + 𝐷)(𝑥 − 4)2 

= (𝐴 + 𝐶)𝑥3 + (−4𝐴 + 𝐵 − 8𝐶 + 𝐷)𝑥2 

+(3𝐴 + 16𝐶 − 8𝐷)𝑥 − 12𝐴 + 3𝐵 + 16𝐷 

𝑥3:
𝑥2:

𝐴 + 𝐶 = 0
−4𝐴 + 𝐵 − 8𝐶 + 𝐷 = 1

𝑥1:
𝑥0:

3𝐴 + 16𝐶 − 8𝐷 = −29
−12𝐴 + 3𝐵 + 16𝐷 = 5

} ⇒

𝐴 = 𝟏
𝐵 = −𝟓
𝐶 = −𝟏
𝐷 = 𝟐

 

 

 

*Equate 

coefficients 

and solve 

 

*Expand 

and then 

simplify 

 

3 - D  V E C T O R S  

 

S Y ST E M S  O F  L I N E AR EQ U AT IO NS  
 

 Solutions of Linear Equations 
 

• Echelon matrix form: each leading entry (i.e. 
the first non-zero element in each row) is a 
column to the right of the previous row. 

• Infinite solutions: more than one solution. 
▪ Graphical representation: 

the 3 planes produce an 
intersection that is a line. 

▪ Echelon matrix last row: 
[𝟎 𝟎 𝟎 | 𝟎] 

• Unique solution: only one solution. 
▪ Graphical representation: 

the 3 planes produce an 
intersection that is a line. 

▪ Echelon matrix last row: 
[𝟎 𝟎 𝑨 | 𝑩]𝑨,𝑩 ≠ 𝟎 

• No solution: zero solutions. 
▪ Graphical representation: 

no planes have a common 
point of intersection. 

▪ Echelon matrix last row: 
[𝟎 𝟎 𝟎 | 𝑩] 𝑩 ≠ 𝟎 
 

 

 ClassPad Main App Echelon Form 
 

𝑨𝒄𝒕𝒊𝒐𝒏 → 𝑴𝒂𝒕𝒓𝒊𝒙 → 𝒓𝒆𝒇([𝒎𝒂𝒕𝒓𝒊𝒙]) 
 
 

 Systems of Linear Equations Examples 
 

(Q1) Reduce this matrix to echelon form: 

[
1 1 1
1 2 7 + 𝑎
2 3 𝑎2 + 2

|
3
5

𝑎 + 10
] 

= [
1 1 1
0 1 6 + 𝑎
0 1 𝑎2

|
3
2

𝑎 + 4
] 

= [
1 1 1
0 1 6 + 𝑎
0 0 𝑎2 − 𝑎 − 6

|
3
2

𝑎 + 2
] 

(Q1a) Find 𝑎 that gives no solutions: 

Last row in form of: [0 0 0 | 𝐵] 𝐵 ≠ 0 

∴ 𝑎2 − 𝑎 − 6 = 0 and 𝑎 + 2 ≠ 0 

Solving to get 𝑎 = 3,−2 and 𝑎 ≠ −2 ∴ 𝑎 = 𝟑  

(Q1b) Find 𝑎 that gives infinite solutions: 

Last row in form of: [0 0 0 | 0] 
∴ 𝑎2 − 𝑎 − 6 = 0 and 𝑎 + 2 = 0 

Solving to get 𝑎 = 3,−2 and 𝑎 = −2 ∴ 𝑎 = −𝟐  

(Q1c) Find 𝑎 that gives a unique solution: 

Last row in form of: [0 0 𝐴 | 𝐵]𝐴, 𝐵 ≠ 0 

∴ 𝑎2 − 𝑎 − 6 ≠ 0 and 𝑎 + 2 ≠ 0 

Solving to get 𝑎 ≠ 3,−2 and 𝑎 ≠ −2 

∴ 𝑎 ≠ −2 has unique solution (𝑎 ∈ ℝ: 𝑎 ≠ −𝟐) 

 
 
 
 

 

𝑅1 
𝑅2 − 𝑅1 
𝑅3 − 2𝑅1 
 

 

 

 

𝑅1 
𝑅2 
𝑅3 − 𝑅2 
 

 

 

 

*Ensure increasing 

zeroes in bottom left. 

 *Write all row 

operations 

beside matrix 

on each step. 
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 Line Definition and Equations 
 

• Lines contain a 

series of collinear 

points that extends 

infinitely in both 

directions. 

• Parametric equation of a line: 
 

𝒙 = 𝒂 + 𝝀𝒅, 𝒚 = 𝒃 + 𝝀𝒆, 𝒛 = 𝒄 + 𝝀𝒇 

• (𝒂, 𝒃, 𝒄) ∶ is 𝑟0 (i.e. point on the line). 

• (𝒅, 𝒆, 𝒇) ∶ is 𝑟 − 𝑟0 (i.e. vector direction). 

• 𝝀 ∶ magnitude/direction constant. 
 

• Cartesian equation of a line: 
 

𝒙 − 𝒂

𝒅
=

𝒚 − 𝒃

𝒆
=

𝒛 − 𝒄

𝒇
 

• (𝒂, 𝒃, 𝒄) ∶ is 𝑟0 (i.e. vector origin location). 

• (𝒅, 𝒆, 𝒇) ∶ is 𝑟 − 𝑟0 (i.e. vector direction). 
 
 

 Plane Definition and Equations 
 

• Planes extend 

infinitely in 

all directions 

and has no 

thickness. 

• Vector equation of a plane: 
 

(𝒓 − 𝒓𝟎). 𝒏 = 𝟎  𝒓. 𝒏 = 𝒓𝟎. 𝒏 𝒓. 𝒏 = 𝒄 

• 𝑷𝒂𝒏𝒅𝑷𝟎 ∶ two points on the plane. 

• 𝒏 ∶ normal (perpendicular) to the plane. 
 

• Cartesian equation of a plane: 
 

𝑨(𝒙 − 𝒙𝟎) + 𝑩(𝒚 − 𝒚𝟎) + 𝑪(𝒛 − 𝒛𝟎) = 𝑫  

𝑨𝒙 + 𝑩𝒚 + 𝑪𝒛 + 𝑫 = 𝟎 

• (𝑨,𝑩, 𝑪) ∶ normal vector to the plane. 

• (𝒙𝟎, 𝒚𝟎, 𝒛𝟎) ∶ point on the plane. 

 
 

 

𝒛 

𝒚 
𝒙 

𝑂 

𝑃 𝑃0 

𝑟 
𝑟0 

𝒛 

𝒚 
𝒙 

𝑂 

𝑃 
𝑃0 

𝑟 
𝑟0 

𝑛 

 

 Vector Rules and Notation 
 

• Given �̃� = (𝑥𝑎, 𝑦𝑎 , 𝑧𝑎) and �̃� = (𝑥𝑏, 𝑦𝑏 , 𝑧𝑏): 
 

𝑨𝑩⃗⃗⃗⃗⃗⃗ = �̃� − �̃� |𝒙| = √𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 

|𝑨𝑩⃗⃗⃗⃗⃗⃗ | = √(𝒙𝒃 − 𝒙𝒂)𝟐(𝒚𝒃 − 𝒚𝒂)𝟐(𝒛𝒃 − 𝒛𝒂)𝟐 
 
 

 Unit Vector (�̂� ) 
 

• Returns a vector with the same direction as 

vector 𝑥 but with a magnitude of 1. 
 

�̂� = 𝒂/|𝒂| |�̂�| = 𝟏 
 
 

 Dot Product (𝑎. 𝑏 ) 
 

• Returns scalar result (a single number). 
 

𝒂. 𝒃 = (𝒙𝒂 × 𝒙𝒃) + (𝒚𝒂 × 𝒚𝒃) + (𝒛𝒂 × 𝒛𝒃) 

𝒂. 𝒃 = |𝒂||𝒃|𝒄𝒐𝒔𝜽 𝒂. 𝒂 = |𝒂|𝟐 

𝒂 and 𝒃 are perpendicular if 𝒂. 𝒃 = 𝟎 
 
 

 Cross Product (𝑎 × 𝑏 ) 
 

• Returns vector result (vector with co-ords). 

• Returns a vector normal to a plane. 
 

𝒂 × 𝒃 = (

𝒙𝒂

𝒚𝒂

𝒛𝒂

) × (

𝒙𝒃

𝒚𝒃

𝒛𝒃

) = (

𝒚𝒂𝒛𝒃 − 𝒛𝒂𝒚𝒃

𝒛𝒂𝒙𝒃 − 𝒙𝒂𝒛𝒃

𝒙𝒂𝒚𝒃 − 𝒚𝒂𝒙𝒃

) 

𝒙 × 𝒚 = �̂�|𝒙||𝒚|𝒔𝒊𝒏𝜽 

• �̂� ∶ unit vector perpendicular to 𝑥 and 𝑦. 
 
 

 Vector Equations of a Sphere 
 

• Vector equation of a sphere: 
 

|𝒓 − 𝒄| = 𝒂 

• 𝒄 ∶ co-ords of the centre of sphere. 

• 𝒂 ∶ radius of the sphere. 
 

• Cartesian equation of a sphere: 
 

(𝒙 − 𝒂)𝟐 + (𝒚 − 𝒃)𝟐 + (𝒛 − 𝒄)𝟐 = 𝒓 

• (𝒂, 𝒃, 𝒄) ∶ co-ords of the centre of sphere. 

• 𝒂 ∶ radius of the sphere. 
 

V E C T O R  R U L E S  

+ 

 

+ 

 

A P P L I C AT I O N S  O F  L I N E S  
 

 Application of Line Vectors Examples 
 

• Finding the vector equation of a line: 
 

(Q1) Co-ords of 𝐴(2,1,−3)  and 𝐵(4,5,−1). 

𝐴𝐵⃗⃗⃗⃗  ⃗ = �̃� − �̃� = 2𝑖 + 4𝑗 + 2𝑘 and hence, 

𝑟 = (𝟐𝒊 + 𝒋 − 𝟑𝒌) + 𝝀(𝟐𝒊 + 𝟒𝒋 + 𝟐𝒌) 

• Finding the parametric equation of a line: 
 

(Q2) Point is 𝐴(−7,2,4) and parallel to the line 

given by 𝑥 = 5 − 8𝑡, 𝑦 = 6 + 𝑡, 𝑧 = −12𝑡 

𝑥 = −7 − 8𝑡, 𝑦 = 2 + 𝑡, 𝑧 = 4 − 12𝑡 and then 

solve for 𝑡: (−𝟕 − 𝒙)/𝟖 = 𝒚 − 𝟐 = (𝟒 − 𝒛)/𝟏𝟐 

• Test if a point is perpendicular to a line: 
 

(Q3) Point is 𝐴(1,2,1) and the equation of the 

line is 𝑟 = (𝑖 + 2𝑗 + 3𝑘) + 𝜆(4𝑖 + 2𝑗 − 8𝑘) 
(𝑖 + 2𝑗 + 𝑘). (4𝑖 + 2𝑗 − 8𝑘) = 4 + 4 − 8 = 𝟎 
Hence, the point is perpendicular to the line. 

• Intersection of two moving vectors: 
 

(Q4) Find intersection points between lines  

𝐴 = (−7𝑖 + 9𝑗 − 5𝑘) + 𝜆(5𝑖 − 4𝑗 + 2𝑘) and 

𝐵 = (−6𝑖 − 5𝑗 + 2𝑘) + 𝜇(9𝑖 + 6𝑗 − 3𝑘) 

Solve the 𝑖, 𝑗 and 𝑘 parts for 𝜆 and 𝜇: 

−7 + 5𝜆 = −6 + 9𝜇, 9 − 4𝜆 = −5 + 6𝜇 and 
−5 + 2𝜆 = 2 − 3𝜇 and hence, 𝜆 = 2, 𝜇 = 1 

therefore point of intersection is (𝟑, 𝟏,−𝟏) 
 

► Topic Is Continued In Next Column ◄ 
 

A P P L I C AT I O N S  O F  L I N E S  
 

 Application of Line Vectors Examples 
 

• Collision of two moving vectors: 
 

(Q5) 𝐴 = (2𝑖 + 1𝑗 − 3𝑘) + 𝜆(7𝑖 + 10𝑗 − 3𝑘) and 

𝐵 = (5𝑖 + 28𝑗 − 6𝑘) + 𝜇(6𝑖 + 𝑗 − 2𝑘) where 

velocity is measured in 𝑘𝑚/ℎ. Find collision: 

▪ Equating 𝑖 coefficients: 2 + 7𝜆 = 5 + 6𝜇 

▪ Equating 𝑗 coefficients: 1 + 10𝜆 = 28 + 1𝜇 

▪ Equating 𝑘 coefficients: −3 − 3𝜆 = −6 − 2𝜇 

Solving the first two equations for 𝜆 and 𝜇:  

𝜆 = 3 and 𝜇 = 3. Substitute into third equation 

(𝑘 coefficient): −3 − 3(3) = −6 − 2(3)→ 6 = 6 

which is consistent, so a collision occurs as 

times 𝜆 and 𝜇 are the same (@ 𝑡 = 3). Finding 

collision point, substitute 𝑡 = 3 back into 𝐴 or 𝐵: 

𝐴 = (2𝑖 + 1𝑗 − 3𝑘) + 3(7𝑖 + 10𝑗 − 3𝑘) 

∴ 𝐴and 𝐵 collide at (𝟐𝟑𝒊 + 𝟑𝟏𝒋 − 𝟏𝟐𝒌) 
 

• Shortest distance between two vectors: 
 

(Q6) 𝐴 = (2𝑖 + 𝑗 − 3𝑘) + 𝜆(7𝑖 + 10𝑗 − 3𝑘) and 

𝐵 = (−5𝑖 + 20𝑗 + 𝑘) + 𝜇(−3𝑖 − 𝑗 + 7𝑘) where 

velocity is measured in 𝑘𝑚/ℎ. 
 

�⃗⃗� = 𝑩𝑨⃗⃗⃗⃗⃗⃗ + ( 𝑽𝑩𝑨 )𝒕 �⃗⃗� . 𝑽𝑩𝑨 = 𝟎 

• �⃗⃗� : shortest distance between 𝐴 and 𝐵. 

• 𝑩𝑨⃗⃗⃗⃗⃗⃗ = �̃� − �̃�: vector between 𝐴 and 𝐵. 

• 𝑽𝑩𝑨 = 𝑽𝑨 − 𝑽𝑩: relative velocity 𝐵 to 𝐴. 
 

𝐵𝐴⃗⃗⃗⃗  ⃗ = [
7

−19
−4

] and 𝑉𝐵𝐴 = [
7
10
−3

] − [
−3
−1
7

] = [
10
11

−10
] 

 

𝑑 = 𝐵𝐴⃗⃗⃗⃗  ⃗ + ( 𝑉𝐵𝐴 )𝑡 =(7,−19,−4) + 𝑡(10,11,−10)   

▪ Using ClassPad to find time, 𝑑 . 𝑉𝐵𝐴  

 

= 𝑑𝑜𝑡𝑃 ([
7

−19
−4

] + 𝑡 [
10
11

−10
] , [

10
11
−10

]) = 0.308ℎ𝑟 

▪ Using ClassPad to find shortest distance, 
 

= |(7,−19,−4) + 0.308(10,11,−10)| = 𝟏𝟗. 𝟗𝒌𝒎 
 

• Vector proofs: 
 

(Q7) Triangle 𝐴𝐵𝐶 i with the midpoints of each 

side 𝑀, 𝑁 and 𝑃 shown. Let 𝐴𝐶⃗⃗⃗⃗  ⃗ = 𝑢 and 𝐶𝐵⃗⃗⃗⃗  ⃗ = 𝑣. 

Express 𝐴𝑁⃗⃗⃗⃗⃗⃗ + 𝐶𝑀⃗⃗⃗⃗⃗⃗ + 𝐵𝑃⃗⃗⃗⃗  ⃗ in terms of 𝑢 and 𝑣. 

𝐶𝑀⃗⃗⃗⃗⃗⃗ =
1

2
(𝑣 − 𝑢) =

1

2
𝑣 −

1

2
𝑢  

𝐴𝑁⃗⃗⃗⃗⃗⃗ = 𝑢 +
1

2
𝑣  

𝐵𝑃⃗⃗⃗⃗  ⃗ = −
1

2
𝑢 − 𝑣  

𝐴𝑁⃗⃗⃗⃗⃗⃗ + 𝐶𝑀⃗⃗⃗⃗⃗⃗ + 𝐵𝑃⃗⃗⃗⃗  ⃗ = 𝑢 +
𝑣

2
+

𝑣

2
−

𝑢

2
−

𝑢

2
− 𝑣 = 𝟎   

 

 

 

 Application of Plane Vectors Examples 
 

• Vector equation of a plane: 
 

(Q1) A plane contains the point (5,−7,2) and has 

a normal parallel to (3,0,−1) 

[
𝑥 − 5
𝑦 + 7
𝑧 − 2

] . [
3
0

−1
] = 0 and hence, [

𝒙
𝒚
𝒛
] . [

𝟑
𝟎

−𝟏
] = 𝟏𝟑 

• Cartesian equation of a plane 
 

(Q2) Find cartesian equation of 𝑟. [3,−6,9] = 36 
Let 𝑟 = (𝑥, 𝑦, 𝑧) ∴ (𝑥, 𝑦, 𝑧). (3,−6,9) = 36 

∴ 3𝑥 − 6𝑦 + 9𝑧 = 36 → 𝒙 − 𝟐𝒚 + 𝟑𝒛 = 𝟏𝟐 

• Equation of plane passing through 3 points: 
 

(Q3) Find the equation of a plane that passes 

through points 𝐴(1,1,1), 𝐵(−1,1,0) and 𝐶(2,0,3) 

𝐴𝐵⃗⃗⃗⃗  ⃗ = (−2,0,−1) and 𝐴𝐶⃗⃗⃗⃗  ⃗ = (1,−1,2) 

𝐴𝐵⃗⃗⃗⃗  ⃗ × 𝐴𝐶⃗⃗⃗⃗  ⃗ = (−1,3,2) and hence equation of the 
plane is −𝑥 + 3𝑦 + 2𝑧 + 𝐷 = 0. Sub any point to 

find 𝐷: −(2) + 3(0) + 2(3) + 𝐷 = 0 

𝐷 = −4 hence−𝒙 + 𝟑𝒚 + 𝟐𝒛 − 𝟒 = 𝟎 
 

• Plane with a point and orthogonal to line: 
 

(Q4) Find plane that passes through 𝐴(3,0,−4) 
and orthogonal to 𝑟(𝑡) = 〈12 − 𝑡, 1 + 8𝑡, 4 + 6𝑡〉 
𝑛 = (−1,8,6) ∴ have normal and point in plane: 
−(𝑥 − 3) + 8(𝑦 − 0) + 6(𝑧 + 4) = 0 

Expand and rearrange: −𝒙 + 𝟖𝒚 + 𝟔𝒛 = −𝟐𝟕 
 

• Finding where a line intersects with a plane: 
 

(Q5) A plane contains point (5,−7,2) and has a 

normal vector parallel to (3,0,−1), where does it 

intersect 𝐴 = (−10𝑖 + 4𝑗 − 9𝑘) + 𝜆(2𝑖 + 𝑗 − 6𝑘) 

𝑟. 𝑛 = 𝑟0. 𝑛 → [
−10 + 2𝜆

4 + 𝜆
−9 − 6𝜆

] . [
3
0

−1
] = [

5
−7
2

] . [
3
0

−1
] 

∴ 𝑟. 𝑛 = 𝑐 → [
−10 + 2𝜆

4 + 𝜆
−9 − 6𝜆

] . [
3
0

−1
] = 13  

𝜆 = 17/6 and sub into 𝐴 = (−
𝟐𝟔

𝟔
,
𝟒𝟏

𝟔
, −𝟐𝟔) 

• Shortest distance from point to a plane: 
 

(Q6) Find the shortest distance between point 
(4,−4,3) and the plane 2𝑥 − 2𝑦 + 5𝑧 + 8 = 0 
 

�⃗⃗� =
𝒂𝒃𝒔𝒐𝒍𝒖𝒕𝒆𝒗𝒂𝒍𝒖𝒆(𝑨𝒙 + 𝑩𝒚 + 𝑪𝒛 + 𝑫)

√𝑨𝟐 + 𝑩𝟐 + 𝑪𝟐
 

• �⃗⃗� : shortest distance between point/plane. 

• (𝑨,𝑩, 𝑪) ∶ normal vector to the plane. 

• (𝒙, 𝒚, 𝒛) ∶ point outside of the plane. 
 

𝑑 =
𝑎𝑏𝑠[(2 × 4) + (−2 × −4) + (3 × 5) + 8]

√22 + (−2)2 + 52
 

∴ 𝑑 = 39/√33 = 𝟔. 𝟕𝟗 units. 

 

A P P L I C AT I O N S  O F  P L AN E S  

𝑩 

𝑨 
𝑪 

𝑁 
𝑀 

𝑃 

*Solve 

for 𝜆: 
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A P P L I C AT I O N S  O F  S P H E R E S  
 

 Application of Vector Sphere Examples 
 

(Q1) Find the radius and co-ordinates of the 
centre of the sphere with the equation: 

𝑥2 + 𝑦2 + 𝑧2 + 2𝑥 + 4𝑦 − 6𝑧 − 50 = 0 

Rearrange: 𝑥2 + 𝑦2 + 𝑧2 + 2𝑥 + 4𝑦 − 6𝑧 = 50 

∴ 𝑎 = 2, 𝑏 = 4, 𝑐 = −6, 𝑑 = 50 

𝐿𝐻𝑆 = (𝑥 +
𝑎

2
)

2

+ (𝑦 +
𝑏

2
)

2

+(𝑧 +
𝑐

2
)

2

  

𝐿𝐻𝑆 = (𝑥 + 1)2 + (𝑦 + 2)2+(𝑧 − 3)2 

𝑅𝐻𝑆 = 𝑑 + (
𝑎

2
)

2

+ (
𝑏

2
)
2

+ (
𝑐

2
)

2

  

𝑅𝐻𝑆 = 50 + 1 + 4 + 9 = 64 = 82 

Hence, centre at (−𝟏,−𝟐, 𝟑) and radius of 𝟖. 
 

(Q2) Find vector equation of sphere with a 
diameter 𝐴𝐵 where 𝐴(−1,0,6) and 𝐵(3,6,18): 

𝐶𝑒𝑛𝑡𝑟𝑒 = (
−1+3

2
,
0+6

2
,
6+18

2
) = (1,3,12)  

𝑅𝑎𝑑𝑖𝑢𝑠 = (|1 − −1,3 − 0,12 − 6|) = (|2,3,6|) 

= √22 + 32 + 62 = 7 then sub into equation: 

|𝑟 − 𝑐| = 𝑎 → |𝒓 − (𝟏, 𝟑, 𝟏𝟐)| = 𝟕 
 
 
 
 
 
 
 
 

 
 
 
 

*Expand 

and simplify 

 

T R I G O N O M E T R Y  

T R I G O N O M E T R I C  F O R M U L A E  
 

 Exact Values of Trigonometric Ratios 
 

Deg. 𝟎° 𝟑𝟎° 𝟒𝟓° 𝟔𝟎° 𝟗𝟎° 
Rad. 𝟎 𝝅/𝟔 𝝅/𝟒 𝝅/𝟑 𝝅/𝟐 
Sin 0 1/2 √2/2 √3/2 1 
Cos 1 √3/2 √2/2 1/2 0 
Tan 0 √3/3 1 √3 N/A 

 
 

 Trigonometric Identities 
 

• Sum and difference identities: 
 

𝐬𝐢𝐧(𝐚 ± 𝐛) = 𝐬𝐢𝐧(𝐚) 𝐜𝐨𝐬(𝐛) ± 𝐬𝐢𝐧(𝐛) 𝐜𝐨𝐬(𝐚) 

𝐜𝐨𝐬(𝐚 ± 𝐛) = 𝐜𝐨𝐬(𝐚) 𝐜𝐨𝐬(𝐛) ∓ 𝐬𝐢𝐧(𝐚) 𝐬𝐢𝐧(𝐛) 

𝐭𝐚𝐧(𝐚 ± 𝐛) =
𝐭𝐚𝐧(𝐚) ± 𝐭𝐚𝐧(𝐛)

𝟏 ∓ 𝐭𝐚𝐧(𝐚)𝐭𝐚𝐧(𝐛)
 

 

• Reciprocal identities: 
 

𝐜𝐨𝐬𝐞𝐜(𝒙) = 
𝟏

𝒔𝒊𝒏(𝒙)
 

𝐬𝐞𝐜(𝒙) = 
𝟏

𝒄𝒐𝒔(𝒙)
 

𝐜𝐨𝐭(𝒙) = 
𝟏

𝒕𝒂𝒏(𝒙)
 

 

• Pythagorean identities: 
 

𝐬𝐢𝐧𝟐 𝜽 + 𝐜𝐨𝐬𝟐 𝜽 = 𝟏 𝟏 + 𝐭𝐚𝐧𝟐 𝜽 = 𝐬𝐞𝐜𝟐 𝜽 
 

• Quotient identities: 
 

𝐭𝐚𝐧(𝒙) =
𝐬𝐢𝐧(𝒙)

𝐜𝐨𝐬(𝒙)
 𝐜𝐨𝐭(𝒙) =

𝐜𝐨𝐬(𝒙)

𝐬𝐢𝐧(𝒙)
 

 

• Co-function identities: 
 

𝐬𝐢𝐧 (
𝝅

𝟐
− 𝒙) = 𝐜𝐨𝐬(𝒙) 𝐜𝐨𝐬 (

𝝅

𝟐
− 𝒙) = 𝐬𝐢𝐧(𝒙) 

 

• Parity identities (i.e. even and odd): 
 

𝐬𝐢𝐧(−𝒙) = −𝒔𝒊𝒏(𝒙) 𝐜𝐨𝐬(−𝒙) = 𝐜𝐨𝐬(𝒙) 

𝐭𝐚𝐧(−𝒙) = −𝐭𝐚𝐧(𝒙) 𝐬𝐞𝐜(−𝒙) = 𝐬𝐞𝐜(𝒙) 
 

• Double angle identities: 
 

𝐜𝐨𝐬(𝟐𝒙) = 𝐜𝐨𝐬𝟐(𝒙) − 𝐬𝐢𝐧𝟐(𝒙) 
= 𝟐𝐜𝐨𝐬𝟐(𝒙) − 𝟏 = 𝟏 − 𝟐 𝐬𝐢𝐧𝟐(𝒙) 

𝐬𝐢𝐧(𝟐𝒙) = 𝟐 𝐬𝐢𝐧(𝒙) 𝐜𝐨𝐬(𝒙) 

𝐭𝐚𝐧(𝟐𝒙) =
𝟐𝐭𝐚𝐧(𝒙)

𝟏 − 𝐭𝐚𝐧𝟐(𝒙)
 

 

• Combination angle identities: 
 

𝒄𝒐𝒔𝑿𝒄𝒐𝒔𝒀 =
𝟏

𝟐
(𝒄𝒐𝒔(𝑿 − 𝒀) + 𝒄𝒐𝒔(𝑿 + 𝒀)) 

𝒔𝒊𝒏𝑿𝒔𝒊𝒏𝒀 =
𝟏

𝟐
(𝒄𝒐𝒔(𝑿 − 𝒀) − 𝒄𝒐𝒔(𝑿 + 𝒀)) 

𝒔𝒊𝒏𝑿𝒄𝒐𝒔𝒀 =
𝟏

𝟐
(𝒔𝒊𝒏(𝑿 + 𝒀) + 𝒔𝒊𝒏(𝑿 − 𝒀)) 

 

• Power reducing identities: 
 

𝐬𝐢𝐧𝟐(𝒙) = 
𝟏 − 𝐜𝐨𝐬(𝟐𝒙)

𝟐
 

𝐜𝐨𝐬𝟐(𝒙) = 
𝟏 + 𝐜𝐨𝐬(𝟐𝒙)

𝟐
 

 

• Limits of sine and cosine: 
 

𝐥𝐢𝐦
𝒙→𝟎

𝐬𝐢𝐧(𝒙)

𝒙
= 𝟏 𝒍𝒊𝒎

𝒙→𝟎

𝟏 − 𝒄𝒐𝒔(𝒙)

𝒙
= 𝟎 

 
 

 Triangle Laws 
 

• Sine Rule (i.e. finding angles and sides) 
 

𝒂

𝒔𝒊𝒏𝑨
=

𝒃

𝒔𝒊𝒏𝑩
 

 

𝒔𝒊𝒏𝑨

𝒂
=

𝒔𝒊𝒏𝑩

𝒃
 

 

 

• Cosine Rule (i.e. finding angles and sides) 
 

𝒄𝟐 = 𝒂𝟐 + 𝒃𝟐 − 𝟐 × 𝒂 × 𝒃 × 𝒄𝒐𝒔(𝑪) 

𝑨𝒏𝒈𝒍𝒆𝑪 = 𝒄𝒐𝒔−𝟏 (
𝒂𝟐 + 𝒃𝟐 − 𝒄𝟐

𝟐 × 𝒂 × 𝒃
) 

 
 

 Circle Measure  
 

• Common circle measure terminology: 
 

Arc Sector Chord Segment 

  

 

 

 

• Circle measure formulae: 
 

Length Arc Area Sector Area Segment 

𝒓𝜽 
𝟏

𝟐
𝒓𝟐𝜽 

𝟏

𝟐
𝒓𝟐(𝜽 − 𝒔𝒊𝒏𝜽) 

 

 

 

𝑟 
𝜃 𝜃 𝜃 

𝑟 𝑟 

C A L C U L U S  

 

 Derivative Laws 
 

Type Equation 1st Derivative 

Product 
Rule 

𝑦 = 𝑢𝑣 
𝑑𝑦

𝑑𝑥
= 𝑢′𝑣 + 𝑢𝑣′ 

Quotient 
Rule 

𝑦 =
𝑢

𝑣
 

𝑑𝑦

𝑑𝑥
=

𝑢′𝑣 − 𝑢𝑣′

𝑣2
 

Chain 
Rule 

𝑦[𝑓(𝑥)]𝑛 
𝑑𝑦

𝑑𝑥
𝑛[𝑓(𝑥)]𝑛−1 × 𝑓′(𝑥) 

Chain 
Leibniz 

𝑥 = 𝑓(𝑡) 
𝑦 = 𝑓(𝑡) 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
×

𝑑𝑥

𝑑𝑡
 

 
 

 Common Functions and Derivatives 
 

Function Equation 1st Derivative 

Polynomial 𝑦 = 𝑎𝑥𝑛 
𝑑𝑦

𝑑𝑥
= 𝑛 × 𝑎𝑥𝑛−1 

Exponential 
(Euler) 

𝑦 = 𝑒𝑓(𝑥) 
𝑑𝑦

𝑑𝑥
= 𝑓′(𝑥) × 𝑒𝑓(𝑥) 

Reciprocal 𝑦 =
1

𝑥
= 𝑥−1 

𝑑𝑦

𝑑𝑥
=

−1

𝑥2
= −𝑥−2 

Sine 𝑦 = ±𝑠𝑖𝑛(𝑥) 
𝑑𝑦

𝑑𝑥
= ±𝑐𝑜𝑠(𝑥) 

Cosine 𝑦 = ±𝑐𝑜𝑠(𝑥) 
𝑑𝑦

𝑑𝑥
= ∓𝑠𝑖𝑛(𝑥) 

Tangent 𝑦 = ±𝑡𝑎𝑛(𝑥) 
𝑑𝑦

𝑑𝑥
= ± sec2(𝑥) 

Natural 
Logarithm 

𝑦 = 𝑙𝑛[𝑓(𝑥)] 
𝑑𝑦

𝑑𝑥
=

𝑓′(𝑥)

𝑓(𝑥)
 

Exponential 
(Non-Euler) 

𝑦 = 𝑎𝑥 
𝑑𝑦

𝑑𝑥
= ln(𝑎) × 𝑎𝑥 

 

 

 

D I F F E R E N T I AT I O N  R U L E S  

= = 

I N T E G R AL  L A W S  
 

 Integration Laws 
 

∫ 𝒇(𝒙) =
𝒃

𝒂

− ∫ 𝒇(𝒙)
𝒂

𝒃

 ∫ 𝒇(𝒙) =
𝒂

𝒂

𝟎 

∫𝒂 × 𝒇(𝒙)𝒅𝒙 = 𝒂 × ∫𝒇(𝒙)𝒅𝒙 

∫[𝒇(𝒙) ± 𝒈(𝒙)]𝒅𝒙 = ∫𝒇(𝒙)𝒅𝒙 ± ∫𝒈(𝒙)𝒅𝒙 

∫ 𝒇(𝒙)𝒅𝒙
𝒂

𝒃

+ ∫ 𝒇(𝒙)𝒅𝒙
𝒃

𝒄

= ∫ 𝒇(𝒙)𝒅𝒙
𝒂

𝒄

 

 
 

 Common Functions and Integrals 
 

Function Equation Integral 

Polynomial ∫𝑥𝑛𝑑𝑥 
𝑥𝑛+1

𝑛 + 1
+ 𝑐 

Chain 
Rule 

∫𝑓 ′(𝑥)[𝑓(𝑥)]𝑛 𝑑𝑥 
[𝑓(𝑥)]𝑛+1

𝑛 + 1
+ 𝑐 

Exponential 
(Euler) 

∫𝑒𝑓(𝑥) 𝑑𝑥 
𝑒𝑓(𝑥)

𝑓′(𝑥)
+ 𝑐 

Reciprocal ∫
𝑓′(𝑥)

𝑓(𝑥)
𝑑𝑥 𝑙𝑛|𝑓(𝑥)| + 𝑐 

Sine ∫ 𝑠𝑖𝑛(𝑥) 𝑑𝑥  −𝑐𝑜𝑠(𝑥) + 𝑐 

Cosine ∫ 𝑐𝑜𝑠(𝑥) 𝑑𝑥  𝑠𝑖𝑛(𝑥) + 𝑐 

Secant ∫ 𝑠𝑒𝑐2(𝑥) 𝑑𝑥  𝑡𝑎𝑛(𝑥) + 𝑐 
 
 

 Fundamental Theorem of Calculus 
 

𝒅

𝒅𝒙
(∫ 𝒇(𝒕)𝒅𝒕

𝒙

𝒂

) 

= 𝒇(𝒙) 

∫ 𝒇(𝒙)𝒅𝒙
𝒃

𝒂

 

= 𝑭(𝒃) − 𝑭(𝒂) 
 
 

 Integration by Parts 
 

∫𝒖𝒗′𝒅𝒙 = 𝒖𝒗 −∫𝒖′𝒗𝒅𝒙 

 
 

 Area Between Curves Formulae 
 

• Upper and Lower Bounds on the 𝑥-axis: 
 

∫ (
𝒖𝒑𝒑𝒆𝒓

𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏) − (
𝒍𝒐𝒘𝒆𝒓

𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
)𝒅𝒙

𝒃

𝒂

 

 

• Upper and Lower Bounds on the 𝑦-axis: 

▪ 𝑥 is the subject of equation in terms of 𝑦. 
 

∫ (
𝒓𝒊𝒈𝒉𝒕

𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
) − (

𝒍𝒆𝒇𝒕
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

) 𝒅𝒚
𝒅

𝒄
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 Integration Examples 
 

(Q1) If 𝑢 = 𝑙𝑛√𝑥 + 1, determine  

▪ Unpacking substitution: 

𝑢 = 𝑙𝑛√𝑥 + 1 

𝑒𝑢 = √𝑥 + 1 

𝑒2𝑢 = 𝑥 + 1 

𝑥 = 𝑒2𝑢 − 1 

▪ Substituting 𝑢 into integral: 

∫
(𝑢)(2𝑒2𝑢)

2𝑒2𝑢
𝑑𝑢 = ∫𝑢𝑑𝑢 =

𝑢2

2
=

(𝒍𝒏√𝒙+𝟏)
𝟐

𝟐
+ 𝒄  

 

(Q2) Find the integral ∫ sin5(2𝑥)𝑑𝑥 

= ∫ 𝑠𝑖𝑛2𝑥(sin2 2𝑥)2𝑑𝑥  

= ∫ 𝑠𝑖𝑛2𝑥(1 − cos2 2𝑥)2𝑑𝑥  

= ∫ 𝑠𝑖𝑛2𝑥(1 − 2 cos2 2𝑥 + cos4 2𝑥)𝑑𝑥  

= ∫ 𝑠𝑖𝑛2𝑥 − 2𝑠𝑖𝑛2𝑥𝑐𝑜𝑠22𝑥 + 𝑠𝑖𝑛2𝑥𝑐𝑜𝑠42𝑥𝑑𝑥  

= −
𝒄𝒐𝒔𝟐𝒙

𝟐
+

𝐜𝐨𝐬𝟑 𝟐𝒙

𝟑
−

𝐜𝐨𝐬𝟓 𝟐𝒙

𝟏𝟎
+ 𝒄  

 

► Topic Is Continued In Next Column ◄ 
 

∫
𝑙𝑛√𝑥 + 1

2𝑥 + 2
𝑑𝑥 

𝑑𝑢

𝑑𝑥
=

1

2(𝑥 + 1)
 

𝑑𝑥 = 2(𝑥 + 1)𝑑𝑢 

𝑑𝑥 = 2𝑒2𝑢𝑑𝑢 

 

Denominator: 

2𝑥 + 2 

= 2𝑒2𝑢 

 

*Expand 

and simplify 
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 Integration Examples 
 

(Q3) Let 𝑥 = 2𝑠𝑖𝑛𝜃, determine ∫ √4 − 𝑥22

0
𝑑𝑥 

▪ Unpacking substitution: 

𝑑𝑥 = 2𝑐𝑜𝑠𝜃𝑑𝜃 

𝜃 = 𝑠𝑖𝑛−1(𝑥/2) 

When 𝑥 = 2: 

𝜃 = 𝑠𝑖𝑛−1(2/2) = 𝜋/2 

When 𝑥 = 0: 

𝜃 = 𝑠𝑖𝑛−1(0/2) = 0 

▪ Substituting 𝑢 into integral: 

∫ √4 − 𝑥22

0
𝑑𝑥 = ∫ 2𝑐𝑜𝑠𝜃 × 2𝑐𝑜𝑠𝜃𝑑𝜃

𝜋

2
0

  

= ∫ 4 𝑐𝑜𝑠2 𝜃 𝑑𝜃
𝜋

2
0

=
4

2
∫ (1 + 𝑐𝑜𝑠2𝜃)𝑑𝜃

𝜋

2
0

  

= 2 [𝜃 +
𝑠𝑖𝑛2𝜃

2
]
0

𝜋

2
= 2 [(

𝜋

2
+ 0) − (0 + 0)] = 𝝅   

 

(Q4) Determine ∫(3𝑥 + 11)/(𝑥2 − 𝑥 − 6) 𝑑𝑥 
 

▪ Finding partial fractions (i.e. on page 2): 
 

= ∫
4

𝑥−3
−

1

𝑥+2
𝑑𝑥 = 𝟒𝒍𝒏|𝒙 − 𝟑| − 𝒍𝒏|𝒙 + 𝟐| + 𝒄  

Integral √4 − 𝑥2 

= √4 − (2𝑐𝑜𝑠𝜃)2 

= √4 − 4 cos2 𝜃 

= 2√1 − cos2 𝜃 

= 2𝑠𝑖𝑛𝜃 

 

 

 

I M P L I C I T  D I F F E R E N T I AT I O N  
 

 Implicit Differentiation Rules 
 

• Used for functions that in terms of 𝑥 and 𝑦. 

• Chain rule to differentiate 𝑦 with respect to 𝑥: 
 

𝒅/𝒅𝒙 = 𝒅/𝒅𝒚 × 𝒅𝒚/𝒅𝒙 

𝒅

𝒅𝒙
𝒚𝟐 =

𝒅

𝒅𝒚
𝒚𝟐 ×

𝒅𝒚

𝒅𝒙
= 𝟐𝒚 ×

𝒅𝒚

𝒅𝒙
 

 

• Common implicit derivatives of y: 
 

𝒚 →
𝒅𝒚

𝒅𝒙
 𝒚𝟐 → 𝟐𝒚

𝒅𝒚

𝒅𝒙
 𝒙𝒚 → 𝒚 + 𝒙

𝒅𝒚

𝒅𝒙
 

 

• Method of finding implicit derivatives: 
 

Step 
1 

Differentiate both sides of the 
equation with respect to 𝑥. 

Step  
2 

Collect all terms containing 𝑑𝑦/𝑑𝑥 
on one side of the equation 

Step 
3 

Factor out 𝑑𝑦/𝑑𝑥 and solve for 
𝑑𝑦/𝑑𝑥 (i.e. by dividing both sides). 

 
 

 Implicit Differentiation Examples 
 

(Q1) Determine derivative of 𝑦 = 𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑦 
𝑑𝑦

𝑑𝑥
= 𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑦

𝑑𝑦

𝑑𝑥
 

𝑑𝑦

𝑑𝑥
+ 𝑠𝑖𝑛𝑦

𝑑𝑦

𝑑𝑥
= 𝑐𝑜𝑠𝑥 

 

 (Q2) Find gradient at (2,−1) of 𝑥 + 𝑥2𝑦3 = −2 

1 + 2𝑥𝑦3 + 𝑥23𝑦2
𝑑𝑦

𝑑𝑥
= 0 →

𝑑𝑦

𝑑𝑥
=

−1 − 2𝑥𝑦3

𝑥23𝑦2
 

Sub𝑥 = 2, 𝑦 = −1 → 
𝑑𝑦

𝑑𝑥
=

−1−2×2×(−1)3

22×3×(−1)2
=

3

12
=

𝟏

𝟒
  

Q3) Find co-ords of points where tangent to 

the curve 𝑥2 + 2𝑥𝑦 + 3𝑦2 = 18is horizontal. 

2𝑥 + 2𝑦 + 2𝑥
𝑑𝑦

𝑑𝑥
+ 6𝑦

𝑑𝑦

𝑑𝑥
= 0 

𝑑𝑦

𝑑𝑥
(2𝑥 + 6𝑦) = −2𝑥 − 2𝑦 →

𝑑𝑦

𝑑𝑥
= −(

𝑥 + 𝑦

𝑥 + 3𝑦
) 

Solve for when 
𝑑𝑦

𝑑𝑥
= 0 hence 𝑥 = −𝑦 

Substitute into original: 𝑦2 − 2𝑦2 + 3𝑦2 = 18 

𝑦2 = 9 and hence, (𝟑,−𝟑) and (−𝟑, 𝟑) 
 

(Q4) Point (𝑎, 𝑏) lies on the curves 𝑥2 − 𝑦2 = 5 

and 𝑥𝑦 = 6. Prove that the tangents of both of 
these curves at point (𝑎, 𝑏) are perpendicular. 
 

▪ Differentiating 𝑥2 − 𝑦2 with respect to 𝑥: 

𝑥2 − 𝑦2 = 5 → 2𝑥 − 2𝑦
𝑑𝑦

𝑑𝑥
= 0 →

𝑑𝑦

𝑑𝑥
=

𝑥

𝑦
  

At point (𝑎, 𝑏) the slope is 𝑚1 = 𝑥/𝑦 

▪ Differentiating 𝑥𝑦 = 6 with respect to 𝑥: 

𝑥𝑦 = 6 → 𝑦 + 𝑥
𝑑𝑦

𝑑𝑥
= 0 →

𝑑𝑦

𝑑𝑥
= −

𝑦

𝑥
  

At point (𝑎, 𝑏) the slope is 𝑚2 − 𝑦/𝑥 

▪ Lines are perpendicular if 𝑚1 × 𝑚2 = −1 

𝑚1 × 𝑚2 = (𝑥/𝑦) × (−𝑦/𝑥) = −1 hence yes. 

 
 
 

 
 
 
 

*Substitute 

limits also 

 

D I F F E R E N T I AL  E Q U AT I O N S  
 

 Solving by Separation of Variables 
 

Step 
1 

Move all 𝑦 terms (including 𝑑𝑦) to 

one side of the equation and all 𝑥 

terms (including 𝑑𝑥) to the other. 

Step  
2 

Integrate one side with respect to 𝑦 
and the other with respect to 𝑥. 

Add a “+𝑐” to end of solution. 

Step 
3 

Simplify and solve for 𝑐 if given set 
of co-ords from original function. 

 
 

 Solving Differential Equation Examples 
 

(Q1) Find equation of circle passing through 

(2,4) with a gradient 𝑑𝑦/𝑑𝑥 = 1/𝑦 − 𝑥/𝑦 
𝑑𝑦

𝑑𝑥
=

1−𝑥

𝑦
→ ∫𝑦𝑑𝑦 = ∫1 − 𝑥𝑑𝑦  

𝑦2

2
= 𝑥 −

𝑥2

2
+ 𝑘 → 𝑦2 = 2𝑥 − 𝑥2 + 𝑐  

▪ Apply condition (2,4) to solve for 𝑐: 

42 = 2(2) − 22 + 𝑐 → 16 = 4 − 4 + 𝑐 → 𝑐 = 16 

∴ 𝑦2 = 2𝑥 − 𝑥2 + 16 → 𝒚𝟐 + 𝒙𝟐 − 𝟐𝒙 = 𝟏𝟔  
 

(Q2) Find general solution for the differential 

equation 𝑦′ = 6𝑦2𝑥 given that 𝑥 = 1, 𝑦 = 1/25 
𝑑𝑦

𝑑𝑥
= 6𝑦2𝑥 → ∫

𝑑𝑦

𝑦2
= ∫6𝑥𝑑𝑥 → −

1

𝑦
= 3𝑥2 + 𝑐 

▪ Apply condition (1,1/25) to solve for 𝑐: 
 

−25 = 3 + 𝑐 → 𝑐 = −28 

 ∴ −
1

𝑦
= 3𝑥2 − 28 

 
 

𝑑𝑦

𝑑𝑥
(1 + 𝑠𝑖𝑛𝑦) = 𝑐𝑜𝑠𝑥 

𝑑𝑦

𝑑𝑥
=

𝒄𝒐𝒔𝒙

𝟏 + 𝒔𝒊𝒏𝒚
 

 

∴ 𝑦 =
𝟏

𝟐𝟖 − 𝟑𝒙𝟐
 

 

 Area Between Curves Examples 
 

(Q1) Find an expression for finding the shaded 

area between the two functions 𝑓(𝑥) and 𝑔(𝑥): 
 
 
 
 
 

∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

+ ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
𝑏

𝑎

+ ∫ 𝑔(𝑥)𝑓(𝑥)𝑑𝑥
𝑑

𝑏

 

 

(Q2) Determine the area between the two curves 

𝑦 = 𝑐𝑜𝑠𝑥 and 𝑦 = √3𝑠𝑖𝑛𝑥  as shown below: 
 
 
 

 

 

▪ Finding intersection points 𝐴 and 𝐵: 
1

√3
=

𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥
→

√3

3
= 𝑡𝑎𝑛𝑥 → 𝑥 =

𝜋

6
,
7𝜋

6
…  

▪ Finding area between the two curves: 

∫ √3𝑠𝑖𝑛𝑥 − 𝑐𝑜𝑠𝑥𝑑𝑥 =
7𝜋

6
𝜋

6

[−√3𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥]𝜋

6

7𝜋

6 = 𝟒  

(Q3) Determine the area between the two curves 
𝑥 = 10 − 𝑦2 and 𝑥 = (𝑦 − 2)2 as shown below: 
 
 
 

 

 

▪ Finding intersection points 𝐴 and 𝐵: 

10 − 𝑦2 = (𝑦 − 2)2 → 10 − 𝑦2 = 𝑦2 − 4𝑦 + 4 

0 = 2𝑦2 − 4𝑦 + 6 = (𝑦 − 3)(𝑦 + 1) ∴ 𝑦 = −1,3 

▪ Finding area between the two curves: 

∫ 𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡𝑑𝑦
3

−1
= ∫ 10 − 𝑦2 − (2 − 𝑦)2𝑑𝑦

3

−1
  

= [10𝑦 −
1

3
𝑦3 −

1

3
(2 − 𝑦)3]

−1

3

= 𝟐𝟏
𝟏

𝟑
  

D I F F E R E N T I AT I O N  R U L E S  

(0, 𝑒) 𝑓(𝑥) 

𝑔(𝑥) 

(𝑎, 0) (𝑑, 0) 

(𝑏, 𝑐) 

− − 

√3𝑠𝑖𝑛𝑥 

𝑐𝑜𝑠𝑥 (0,0) 
𝐴 

(0,1) 

𝐵 

10 − 𝑦2 

(𝑦 − 2)2 

𝐴 

𝐵 

(0,2) 

V E C T O R  C AL C U L U S  
 

 Acceleration/Velocity/Displacement 
 

 

 

 

 
 
 

∆ Displacement  Distance Travelled 

𝐶ℎ𝑎𝑛𝑔𝑒 = ∫ 𝑣(𝑡)𝑑𝑡
𝑏

𝑎

 𝑇𝑜𝑡𝑎𝑙 = ∫ |𝑣(𝑡)|𝑑𝑡
𝑏

𝑎

 

 
 

 Hyperbolic and Elliptical Functions 

 

 

 

 
 

• Equation and features of an ellipse: 
 

(𝒙 − 𝒉)𝟐

𝒂𝟐
+

(𝒚 − 𝒌)𝟐

𝒃𝟐
= 𝟏 

• 𝟐𝒂 : width of the ellipse (on the 𝑥-axis). 

• 𝟐𝒃 : height of the ellipse (on the 𝑦-axis). 

• (𝒉, 𝒌) : co-ords of centre of ellipse. 
 

• Equation and features of a hyperbola: 
 

(𝒙 − 𝒉)𝟐

𝒂𝟐
−

(𝒚 − 𝒌)𝟐

𝒃𝟐
= 𝟏 

• 𝒚 = 𝒌 ±
𝒃

𝒂
(𝒙 − 𝒉) : hyperbola asymptotes. 

• (𝒉, 𝒌) : co-ords of centre of hyperbola. 
 
 

 Vector Calculus Examples 
 

(Q1) Velocity of a golf ball at 𝑡 = 0 from origin is 

given by 𝑣 = 35𝑖 + 5𝑗 + 20𝑘 measured in 𝑚/𝑠. 

Note: 𝑖 is unit vector for movement in direction 

of the hole, 𝑗 is movement perpendicular to 𝑖 

and 𝑘 is unit vector for vertical movement. 
 

(Q1a) If 𝑎 = −9.8𝑘, find displacement vector: 

𝑣 = 35𝑖 + 5𝑗 + (20 − 9.8𝑡)𝑘 

𝑠 = ∫ 𝑣𝑑𝑡 = 𝟑𝟓𝒕𝒊 + 𝟓𝒕𝒋 + (𝟐𝟎𝒕 − 𝟒. 𝟗𝒕𝟐)  
 

(Q1b) How long does the ball spend in the air? 

Solve 𝑎(𝑡) = 0 → 20𝑡 − 4.9𝑡2 = 0 → 𝑡 = 𝟒. 𝟎𝟖𝒔 
 

(Q1c) What is ball speed when it hits ground? 

|𝑣(4.08)| = √352 + 52 + (−20)2 = 𝟒𝟎. 𝟔𝟐𝒎/𝒔 
 

(Q1d) The hole is 150 metres away from tee 

off. How far is the ball when it hits the ground?  

𝑟(4.08) = 142.8𝑖 + 20.4𝑗 

150𝑖 − (142.8𝑖 + 20.4𝑗) 
 

(Q2) Find cartesian equation of the particle that 

moves according to 𝑣 = (3𝑐𝑜𝑠𝑡)𝑖 + (𝑠𝑖𝑛𝑡)𝑗 

𝑥 = 3𝑐𝑜𝑠𝑡 → 𝑐𝑜𝑠𝑡 = 𝑥/3 and 𝑦 = 𝑠𝑖𝑛𝑡  

𝑠𝑖𝑛2 𝑡 + 𝑐𝑜𝑠2 𝑡 = 𝑦2 + (𝑥/3)2 = 1 → 
𝒙𝟐

𝟗
+ 𝒚𝟐 = 𝟏 

(Q3) Find cartesian equation of the particle that 

moves according to 𝑣 = (3𝑡𝑎𝑛𝑡)𝑖 + (4𝑠𝑒𝑐𝑡)𝑗 

𝑥 = 3𝑡𝑎𝑛𝑡 → 𝑡𝑎𝑛𝑡 = 𝑥/3 and 𝑠𝑒𝑐𝑡 = 𝑦/4 

1 + tan2 𝜃 = sec2 𝜃 → 1 + (𝑥/3)2 = (𝑦/4)2 

Expand and simplify: 1 +
𝑥2

9
=

𝑦2

16
→

𝒚𝟐

𝟏𝟔
−

𝒙𝟐

𝟗
= 𝟏  

 

𝒚 

𝒙 

𝒚 

𝒙 

  

𝒔 
  

𝒗 

 

Differentiate 

Antidifferentiate 

  

𝒂 

 

𝐷𝑖𝑠𝑡 = |7.2𝑖 + 20.4𝑗| 

√7.22 + 20.42 = 𝟐𝟐𝒎 
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 L O G I S T I C  F U N C T I O N  
 

 Logistic Function Notation and Graph 
 

• Model to predict population growth that is 

initially exponential and then slows down. 

 

 

 

 

 

 

 
 

𝒅𝑷

𝒅𝒕
= 𝒂𝑷 (𝟏 −

𝑷

𝑲
) 𝑷 =

𝑲

𝟏 + 𝑪𝒆−𝒂𝒕
 

• 𝑷 : population at time = 𝑡. 
• 𝑲 : carrying capacity (i.e. maximum pop). 

• 𝒂 : growth rate (" − 𝑎" makes it decay). 

• 𝑪 : constant (specific to the question).  
 
 

 Logistic Function Examples 
 

(Q1) Population of fish in a 

lake 𝑡 years after 2000 is 

modelled by the function: 
 

(Q1a) What is the population in year 2010? 

 

𝑃 = 500/(1 + 8𝑒−0.07×10) = 91.41 ≈ 𝟗𝟏 
 

(Q1b) What is the carrying capacity of fish? 

 

As 𝑡 → ∞, 𝑃 → 500/(1 + 9𝑒−∞) → 𝐾 = 𝟓𝟎𝟎  
 

(Q1c) At what time is there maximum growth?  

 

Maximum growth occurs when population is 
equal to 𝐾/2 = 250 fish. At this point, the time 
is equal to 𝑙𝑛 𝐶 /𝑎 = 𝑙𝑛 9 /0.07 = 𝟑𝟏. 𝟑𝟗 years. 
 

(Q1d) Find the derivative of the function: 

 

𝑑𝑃

𝑑𝑡
= 0.07𝑃 (1 −

𝑃

500
) =

𝟕𝑷

𝟏𝟎𝟎
−

𝟕𝑷𝟐

𝟓𝟎𝟎𝟎𝟎
  

 

(Q1e) Derive original function from derivative, 

given the initial condition 𝑃(0) = 50: 

 

Step 
1 

Combine into one fraction and 
integrate by separating variables. 

Step  
2 

Split the large fraction by using 
partial fractions to integrate. 

Step 
3 

Use log law 𝑙𝑛(𝑎) − 𝑙𝑛(𝑏) = 𝑙𝑛 (
𝑎

𝑏
) 

to simplify and then sub 𝑒𝑐 = 𝐶 

Step 
4 

Solve for 𝐶 by subbing and solving 

using the initial condition (𝑡, 𝑃). 

Step 
5 

Rearrange the equation so that the 
population 𝑃 is the subject. 

 

▪ Combine fractions and separate variables: 
𝑑𝑃

𝑑𝑡
=

7

100
(

500𝑃−𝑃2

500
) → ∫

500

500𝑃−𝑃2
𝑑𝑃 = ∫

7

100
𝑑𝑡  

▪ Use partial fractions to integrate LHS: 
500

500𝑃−𝑃2
=

500

𝑃(500−𝑃)
=

𝐴

𝑃
+

𝐵

500−𝑃
=

500𝐴−𝐴𝑃+𝐵𝑃

𝑃(500−𝑃)
  

∴ 500𝐴 = 500& −𝐴𝑃 + 𝐵𝑃 = 0 ∴ 𝐴 = 1,𝐵 = 1 

∴ ∫
1

𝑃
+

1

(500−𝑃)
𝑑𝑃 = ∫

7

100
𝑑𝑡  

𝑙𝑛|𝑃| − 𝑙𝑛|500 − 𝑃| =
7𝑡

100
+ 𝑐  

▪ Use log laws and 𝑒𝑐 = 𝐶 substitution: 

𝑙𝑛 |
𝑃

500−𝑃
| = 0.07𝑡 + 𝑐  

𝑃

500−𝑃
= 𝑒0.07𝑡+𝑐  

▪ Solve 𝐶 using initial condition 𝑃(0) = 50: 
50

500−50
= 𝐶𝑒0.07(0) →

50

450
= 𝐶𝑒0 → 𝐶 =

1

9
  

▪ Rearrange to make 𝑃 the subject: 
𝑃

500−𝑃
=

1

9
𝑒0.07𝑡  

9𝑃 = (500 − 𝑃)𝑒0.07𝑡  

▪  Divide both sides of equation by 𝑒0.07𝑡: 

𝑃 (
9

𝑒0.07𝑡
+ 1) = 500 → 𝑷 =

𝟓𝟎𝟎

𝟏+𝟗𝒆−𝟎.𝟎𝟕𝒕
  

 
 

 

 

Asymptote 
 

Increasing 
growth rate  
 

Decreasing 
growth rate 
 

Maximum 
growth rate 

𝒚 

𝒙 

𝑦 = 𝐾 

(
𝑙𝑛 𝐶

𝑎
,
𝐾

2
)  

(0
,

𝐾

1
+
𝐶
) 

 

𝑃 =
500

1 + 9𝑒−0.07𝑡
 

𝑃

500−𝑃
= 𝑒𝑐 × 𝑒0.07𝑡  

𝑃

500−𝑃
= 𝐶𝑒0.07𝑡  

 

9𝑃 + 𝑒0.07𝑡𝑃 = 500𝑒0.07𝑡  

𝑃(9 + 𝑒0.07𝑡) = 500𝑒0.07𝑡 

*Integrate using 
integral laws 

 

S L O P E  F I E L D S  
 

 Slope Field Examples 
 

(Q1) Find a general differential equation for the 
slope fields below and explain your reasoning. 
 

(Q1a)  
 
 
 
 
 
 
 

 
 


𝒅𝒚

𝒅𝒙
= 𝒂𝒙 + 𝒃  

 

(Q1b)  
 
 

 

 

 

 
 

         
𝒅𝒚

𝒅𝒙
= 𝒂𝒙𝟐  

 

(Q1c)  
 

 

 

 

 

 

 

      
𝒅𝒚

𝒅𝒙
=

𝒂

𝒙𝟐
+ 𝒃  

 

𝒚 

𝒙 

𝒚 

𝒙 

𝒚 

𝒙 

• Quadratic equation 

formed by isoclines. 

• Convex nature, ∴ 𝑎 has 

a positive value. 

• 𝑥-intercept on the 

negative 𝑥-axis, hence 𝑏 

has a positive value. 

• 𝑑𝑦/𝑑𝑥 has format of a 

linear equation. 

 
• Pattern of the isoclines 

forms a cubic equation. 

• Isoclines have consistent 

negative gradient, ∴ 𝑎 

has a negative value. 

• No other inflection points 

∴ 𝑏𝑥 has value of 0. 

• 𝑑𝑦/𝑑𝑥 has format of a 

quadratic equation. 

 
• Pattern of the isoclines 

form hyperbolic function. 

• Gradient is ∞ at 𝑥 = 0 ∴  

vertical asymptote. 

• Isoclines have consistent 

positive gradient, ∴ 𝑎 has 

a positive value. 

• 𝑑𝑦/𝑑𝑥 has format of 

derivative of hyperbolic 

function. 

 

 

S I M P L E  H A R M O N I C  M O T I O N  
 

 Period, Amplitude and Phase 
 

• Changing variables of 𝑎𝑓[𝑏(𝑥 + 𝑐)] + 𝑑: 

• Period: how long it takes for a trigonometric 

function to complete 1 full cycle. 

▪ Period relates to ‘𝑏’ in each equation: 
 

Ratio Sine Cosine Tangent 

Period 2𝜋 2𝜋 𝜋 

𝒃 2𝜋/𝑃𝑒𝑟𝑖𝑜𝑑 2𝜋/𝑃𝑒𝑟𝑖𝑜𝑑 𝜋/𝑃𝑒𝑟𝑖𝑜𝑑 
 

Ratio Cosecant Secant Cotangent 

Period 2𝜋 2𝜋 𝜋 

𝒃 2𝜋/𝑃𝑒𝑟𝑖𝑜𝑑 2𝜋/𝑃𝑒𝑟𝑖𝑜𝑑 𝜋/𝑃𝑒𝑟𝑖𝑜𝑑 
 

• Amplitude: maximum vertical distance in 

units from the 𝑥-axis to max/min points. 

▪ Amplitude relates to ‘𝑎’ in each equation: 
 

𝒂 =
𝒎𝒂𝒙𝒚𝒗𝒂𝒍𝒖𝒆 − 𝒎𝒊𝒏𝒚𝒗𝒂𝒍𝒖𝒆

𝟐
 

 

• Phase: refers to any left or rightward shifts. 

▪ Phase relates to ‘𝑐’ in each equation. 

• Vertical Shift: relates to ‘𝑑’ in each equation. 
 
 

 Simple Harmonic Motion Rules ( SMH ) 
 

• Explores motion with variable acceleration 

(i.e. moves according to a trig function). 

• Displacement/velocity/acceleration notation: 

 

 

 

 

 
 

• Finding acceleration of SMH: 
 

�̈� = 𝒂 =
𝒅𝒗

𝒅𝒕
=

𝒅𝟐𝒙

𝒅𝒕𝟐
= 𝒗

𝒅𝒗

𝒅𝒙
=

𝒅

𝒅𝒙
(
𝟏

𝟐
𝒗𝟐) 

 

• Proofs that object undergoes SMH: 
 

𝒂 =
𝒅𝟐𝒙

𝒅𝒕𝟐
= −𝒏𝟐𝒙 𝒗𝟐 = 𝒏𝟐(𝒂𝟐 − 𝒙𝟐) 

• 𝒏 : value of b in 𝑎𝑓[𝑏(𝑥 + 𝑐)] + 𝑑, also 

known as 2𝜋/𝑃𝑒𝑟𝑖𝑜𝑑 or 𝜋/𝑃𝑒𝑟𝑖𝑜𝑑 
depending on the trigonometric function. 

• 𝒂 : amplitude of the motion. 
 
 

 Simple Harmonic Motion Examples 
 

(Q1) Particle accelerates with SMH according 

to 𝑎 = 8𝑐𝑜𝑠2𝑡. Also, initially the particle is 

stationary and at time 𝑡 = 0, 𝑥 = 3 metres. 
 

(Q1a) Find velocity & displacement functions: 

𝑣 = ∫𝑎(𝑡) 𝑑𝑡 = ∫ 8𝑐𝑜𝑠𝑡2𝑡 𝑑𝑡 = 4𝑠𝑖𝑛2𝑡 + 𝑐 

At 𝑡 = 0, 𝑣 = 0 ∴ 𝑐 = 0 ∴ 𝑣 = 𝟒𝒔𝒊𝒏𝟐𝒕 

𝑥 = ∫ 𝑣(𝑡) 𝑑𝑡 = ∫ 4𝑠𝑖𝑛2𝑡 𝑑𝑡 = −2𝑐𝑜𝑠2𝑡 + 𝑐  

At 𝑡 = 0, 𝑥 = 2 ∴ 𝑐 = 4 ∴ 𝑥 = −𝟐𝒄𝒐𝒔𝟐𝒕 + 𝟒 
 

(Q1b) Find particle speed at 𝑥 = 0.75 metres: 

𝑣2 = 𝑘2(𝐴2 − 𝑥2) = 22(22 − 0.752) = 𝟏𝟑. 𝟖𝒎/𝒔 
 

(Q1c) Find distance travelled after 3 seconds: 

𝐷𝑖𝑠𝑡 = ∫ |𝑣(𝑡)|𝑑𝑡
3

0
= ∫ |4𝑠𝑖𝑛2𝑡|𝑑𝑡

3

0
= 𝟕. 𝟗𝟐𝒎  

 

(Q2) Particle is moving in a line with distance 

from origin given by 𝑥 = 2 cos (
𝜋𝑡

3
) − 3 sin (

𝜋𝑡

3
). 

(Q2a) Prove that particle is undergoing SMH: 

�̇� = −2 (
𝜋

3
) 𝑠𝑖𝑛 (

𝜋𝑡

3
) − 3 (

𝜋

3
) cos (

𝜋𝑡

3
)  

�̈� = −2 (
𝜋

3
) (

𝜋

3
) 𝑐𝑜𝑠 (

𝜋𝑡

3
) + 3 (

𝜋

3
) (

𝜋

3
) 𝑠𝑖𝑛 (

𝜋𝑡

3
)  

�̈� = (
−2𝜋2

9
) 𝑐𝑜𝑠 (

𝜋𝑡

3
) + (

3𝜋2

9
) 𝑠𝑖𝑛 (

𝜋𝑡

3
)  

�̈� =
𝜋2

9
(−2𝑐𝑜𝑠 (

𝜋𝑡

3
) + 3𝑠𝑖𝑛 (

𝜋𝑡

3
))  

�̈� = −
𝜋2

9
(2𝑐𝑜𝑠 (

𝜋𝑡

3
) − 3𝑠𝑖𝑛 (

𝜋𝑡

3
))  

�̈� = − (
𝝅

𝟑
)

𝟐

𝒙 which is in the form of  𝑎 = −𝑛2𝑥 
 

(Q2b) What is the initial displacement?  

𝑥(0) = 2 cos (
𝜋×0

3
) − 3 sin (

𝜋×0

3
) = 𝟐 metres.  

 

(Q2c) What is the amplitude and period?  

𝐴 = √22 + (−3)2 

𝐴 = √13 = 𝟑. 𝟔𝟏 m 

  

 

𝒙 

  

𝒗 

�̇� 

 

Differentiate 

Antidifferentiate 

  

𝒂 

�̈� 

 

*Factorise to 

match �̈� with 

𝑥 equation 

 

𝑃𝑒𝑟𝑖𝑜𝑑 = 2𝜋/𝑏 

𝑃𝑒𝑟𝑖𝑜𝑑 = 2𝜋/(𝜋/3) = 𝟔 s 

 

 

 

 Small Change and Approximation 
 

• Finds approximate 

change in 𝑦 from a 

small change in 𝑥.  
 

 

 Small Change by Euler’s Method 
 

Step 
1 

Determine 𝑑𝑦/𝑑𝑥 using implicit 
differentiation techniques. 

Step  
2 

Select appropriate small change in 
𝑥 to use in 𝑑𝑦/𝑑𝑥 (e.g. 𝛿𝑥 = 0.1). 

Step 
3 

Find value of  𝛿𝑦 by incrementally 

calculating 𝑑𝑦/𝑑𝑥 for each 𝛿𝑥. 
 
 

 Incremental Formula Example 
 

(Q1) 𝑑𝑦/𝑑𝑥 = 𝑥𝑦 − 𝑥2 with a point at (5,6). 

Determine an estimate for 𝑦 when 𝑥 = 5.2 . 

▪ Using Euler’s method with 𝛿𝑥 = 0.1 
 

𝒙 𝒚 𝒅𝒚/𝒅𝒙 𝜹𝒚 ≈ 𝒅𝒚/𝒅𝒙 × 𝜹𝒙 

5 6 5 0.5 

5.1 6.5 7.14 0.714 

5.2 7.214 N/A N/A 
 

∴ estimate for 𝑦 when 𝑥 = 5.2 is 𝑦 = 𝟕. 𝟐𝟏𝟒 

 

I N C R E M E N T AL  F O R M U L A  

 

𝜹𝒚 ≈
𝒅𝒚

𝒅𝒙
× 𝜹𝒙 

 

 

R E L AT E D  R AT E S  
 

 Related Rates Notation 
 

𝒅𝒚

𝒅𝒕
=

𝒅𝒚

𝒅𝒙
×

𝒅𝒕

𝒅𝒙
 

𝒅𝒕

𝒅𝒙
= 𝟏 ÷

𝒅𝒙

𝒅𝒕
 

 
 

 Related Rates Examples 
 

(Q1) Cylindrical balloon is inflated at a constant 

rate of 0.5𝑚3/𝑚𝑖𝑛 and has its height equal to 

its diameter. Find the rate of change of the 

surface area when it contains 2𝑚3of air. 
 

▪ Finding expression of surface area: 

𝑉 = 𝜋𝑟2ℎ = 𝜋𝑟2(2𝑟) = 2𝜋𝑟3 ∴ 𝑟 =  √𝑉/1𝜋3
   

𝑆𝐴 = 2𝜋𝑟2 + 2𝜋𝑟ℎ = 2𝜋𝑟2 + 2𝜋𝑟 × 2𝑟 = 6𝜋𝑟2 

𝑆𝐴 = 6𝜋 × √𝑉2/4𝜋23 = √54𝜋𝑉23
 

▪ Finding rate of change of surface area: 
𝑑𝑆𝐴

𝑑𝑉
=

2

3
 √54𝜋
3

× 𝑉
−1

3  and 
𝑑𝑆𝐴

𝑑𝑡
= 

𝑑𝑆𝐴

𝑑𝑉
×

𝑑𝑉

𝑑𝑡
  

𝑑𝑆𝐴

𝑑𝑡
=

2

3
√54𝜋
3

× 𝑉
−1

3 ×
𝑑𝑉

𝑑𝑡
=

2

3
√54𝜋
3

× 0.5
−1

3 × 2  

𝑑𝑆𝐴

𝑑𝑡
= 𝟓. 𝟖𝟔𝑚2/𝑚𝑖𝑛  

 

(Q2) Shown on right is 

two identical circular 

cones each with height 

ℎ cm and semi-vertical 

angle 45°. The lower 

cone is filled with water 

with the upper cone being lowered into it at a 

rate of 𝑑𝑙/𝑑𝑡 = 8 where time is in seconds. As 

upper cone is lowered, water spills out of the 

bottom cone that has 𝑉𝑐𝑚 volume remaining.  
 

(Q2a) Show that 𝑉 = 𝜋/3 × (ℎ3 − 𝑙3) 
 

The radius of the cones is ℎ cm. The volume of 

water in the lower cone at time 𝑡 is given by: 

𝑉 =
𝜋ℎ2×ℎ

3
−

𝜋𝑙2×𝑙

3
=

𝝅

𝟑
(𝒉𝟑 − 𝒍𝟑) QED. 

 

(Q2b) Find rate of change of 𝑉 when the upper 

cone has been lowered by 3𝑐𝑚 (i.e. 𝑙 = 3). 
𝑑𝑉

𝑑𝑡
=

𝑑𝑉

𝑑𝑙
×

𝑑𝑙

𝑑𝑡
= −𝜋𝑙2 × 8 = −𝟖𝝅𝒍𝟐𝑐𝑚3/𝑠 

 

(Q2c) Find rate of change of 𝑉 when the lower 

cone has lost 12.5% of its water in terms of ℎ. 
 

The lower cone has lost 12.5% of water when:  
𝜋𝑙3

3
=

1

8

𝜋ℎ3

3
 which rearranging gives ℎ = 2𝑙 

𝑑𝑉

𝑑𝑡
=

𝑑𝑉

𝑑𝑙
×

𝑑𝑙

𝑑𝑡
= −8𝜋𝑙2 = −𝟐𝝅𝒉𝟐𝑐𝑚3/𝑠 

 

𝒍 

𝒉 

𝟒𝟓° 

V O L U M E S  O F  R E V O L U T I O N  
 

 Volumes of Revolution Formulae 
 

• Rotating a function 360° around the 𝑥 or 𝑦-

axis creates a three-dimensional solid. 

• Volumes of revolution about the 𝑥-axis: 

▪ Upper and lower bounds on the 𝑥-axis. 

▪ 𝑦 is the subject of equation in terms of 𝑥. 
 

𝑽 = 𝝅∫ 𝒚𝟐𝒅𝒙
𝒃

𝒂

 
 

 

• Volumes of revolution about the 𝑦-axis: 

▪ Upper and lower bounds on the 𝑦-axis. 

▪ 𝑥 is the subject of equation in terms of 𝑦. 
 

𝑽 = 𝝅∫ 𝒙𝟐𝒅𝒚
𝒃

𝒂

 
 

 
 

 Volumes of Revolution Examples 
 

(Q1) Find the region bounded by the line 𝑥 =
𝜋

2
 

and 𝑦 = 3𝑡𝑎𝑛(𝑥/3) rotated around the x-axis. 

𝑉 = 𝜋 ∫ 𝑦2𝑑𝑥
𝑏

𝑎
= 𝜋 ∫ (3𝑡𝑎𝑛(𝑥/3))

2
𝑑𝑥

𝜋/2

0
  

(3𝑡𝑎𝑛(𝑥/3))
2
= 9 tan2(𝑥/3) = 9 sec2(𝑥/3) + 9 

= 𝜋 ∫ 9 sec2(𝑥/3) − 9𝑑𝑥
𝜋

2
0

=
−9𝜋

2
+ 9√3𝜋 = 𝟏. 𝟒𝟓  

(Q2) Determine the volume of the region in 

between the functions 𝑥 = 𝑦2 − 6𝑦 + 10 and 

𝑥 = 5 rotated around the y-axis. 

▪ Determine the points of intersection: 

5 = 𝑦2 − 6𝑦 + 10 → 0 = 𝑦2 − 6𝑦 + 5 
0 = (𝑦 − 5)(𝑦 − 1) → 𝑦 = 1, 5 

Hence, points of intersection are (5,1) and (5,5) 
Inner radius= 𝑦2 − 6𝑦 + 10,outer radius = 5 

∴ can treat this as an area between two curves 
question with respect to the y-axis. 
∴ 𝑥2 = [(𝑜𝑢𝑡𝑒𝑟𝑟𝑎𝑑𝑖𝑢𝑠)2 − (𝑖𝑛𝑛𝑒𝑟𝑟𝑎𝑑𝑖𝑢𝑠)2] 
= [(5)2 − (𝑦2 − 6𝑦 + 10)2] 
= [−75 + 120𝑦 − 56𝑦2 + 12𝑦3 − 𝑦4] 
▪ Finding volume around 𝑦-axis: 

𝑉 = 𝜋 ∫ −75 + 120𝑦 − 56𝑦2 + 12𝑦3 − 𝑦4𝑑𝑦
5

1
  

= 𝜋 [−75𝑦 + 60𝑦2 −
56

3
𝑦3 + 3𝑦4 −

1

5
𝑦5]

1

5

  

= 1088𝜋/15 = 𝟐𝟐𝟕. 𝟖𝟕 
(Q3) Write an expression for the volume of the 

solid generated by the area enclosed by  

𝑦 = √𝑥, 𝑦 = 0, −𝑥 + 𝑦 = −6 and𝑥 = 4, lying in 

the first quadrant rotated about the y-axis. 

 

 

 

 

 

 

▪ Finding points of intersection: 

𝑥 = 4 and 𝑦 = √𝑥 intersect at 𝑦 = 4 

−𝑥 + 𝑦 = −6 and 𝑦 = √𝑥 intersect at 𝑦 = 3 

▪ Finding volume around 𝑦-axis: 

∫ 𝜋(𝑦 + 6)23

0
𝑑𝑦 − ∫ 𝜋(𝑦4)

3

2
𝑑𝑦 − ∫ 𝜋(16)

2

0
𝑑𝑦  

 

𝒚 

𝒚 

𝒙 

𝒙 

𝒚 

𝒙 

𝑥 = 4 
𝑦 = 𝑥 − 6 

𝑦 = √𝑥 

4 6 

2 

3 

 

S A M P L E S  A N D  C O N F I D E N C E  
 

 Central Limit Theorem ( CLT ) 

• If there are a large number of independent 

random samples (i.e. 𝑛 ≥ 30), the data can be 

modelled using a normal distribution. 

• Also appropriate if 𝑛𝑝 and 𝑛𝑝(1 − 𝑝) ≥ 10. 

• Uses sample size not number of samples. 
 
 

 CLT of a Random Variable 𝑿 
 

• 𝜇 is population mean and �̅� is sample mean. 

• 𝜎 is population S.D. and 𝑠 is sample S.D. 

• If 𝑛 ≥ 30, 𝑋~𝑁 with the following parameters: 
 

Mean 

(stays) 

S.D. 

(changes) 

Z-Score 

(changes) 

�̅�  
𝑠

√𝑛
 𝑍 =

�̅� − 𝜇

𝑠/√𝑛
 

 
 

 Confidence Intervals ( CI ) 
 

• Probability that confidence interval (at a certain 

level) will contain the population proportion. 
 

 

(�̅� − 𝒔𝒛/√𝒏, . �̅� + 𝒔𝒛/√𝒏) = (𝑪𝑰𝑳, 𝑪𝑰𝑼)  

• 𝒁 ∶ z-score for a given confidence interval. 

• 𝑪𝑰𝑳 ∶ confidence interval lower bound. 

• 𝑪𝑰𝑼 ∶ confidence interval upper bound. 
 

• Commonly used Confidence Intervals: 
 

% Confidence Interval Z-Score 

99% Confidence Interval 2.58 

95% Confidence Interval 1.96 

90% Confidence Interval 1.645 
 

• ClassPad Main App Custom CI%: 
 

𝒛𝑪𝑰% = −𝟏 × 𝒊𝒏𝒗𝑵𝒐𝒓𝒎𝑪𝑫𝒇("𝑪", 𝑪𝑰%,𝟏, 𝟎) 

• 𝒁 ∶ z-score for a given confidence interval. 

• 𝑪𝑰𝑳 ∶ confidence interval lower bound. 

• 𝑪𝑰𝑼 ∶ confidence interval upper bound. 
 

• Find sample size for a confidence interval: 
 

𝒏 = (
𝒛 × 𝝈

𝒅
)

𝟐

 

• 𝒅 : value of the difference from the mean. 
 
 

 Statistical Inference Examples 
 

(Q1) Find 95% confidence interval of a sample 

of 25 results with mean of 20 and variance of 4.  

20 − 1.96(2/√25) ≤ 𝜇 ≤ 20 + 1.96(2/√25) 

Hence, the 95% CI is [𝟏𝟗.𝟐𝟏𝟔, 𝟐𝟎. 𝟕𝟖𝟒] 
 

(Q2) What size sample is needed to ensure that 

sample mean is within 1.5 of population mean 

with 99% confidence, given the S.D. is 13. 

𝑛 = (
𝑧 × 𝜎

𝑑
)

2

= (
2.58 × 13

1.5
)

2

= 499.96 ≈ 𝟓𝟎𝟎 
 

 

(Q3) How large of a sample is needed to be 

95% confident that the sample mean is within 

10 of the population mean, given the S.D. is 15. 

10 = 1.96(15/√𝑛) → 𝑛 = 8.6436 ≈ 𝟗 
 

(Q4) 45 samples of mean 94 and S.D. 12 was 

taken. Find parameters of the distribution: 

Approximates to normal: 𝑋~𝑁 (𝟗𝟒, (𝟏𝟐/√𝟒𝟓)
𝟐
) 

 

(Q5) S.D. of a population of water usage per 

month in households in a suburb is 1050 L. 

Random sample of 25 homes were made and 

total water used over a month was 260,000 L. 
 

(Q5a) Find the parameters of the distribution: 

Find mean usage: 𝑋 = 260000/25 = 10400𝐿 

∴ 𝑋~𝑁 (𝟏𝟎𝟒𝟎𝟎, (𝟏𝟎𝟓𝟎/√𝟐𝟓)
𝟐
) 

 

(Q5b) Find a 92% CI for mean water usage: 

𝑧92% = −1 × 𝑖𝑛𝑣𝑁𝑜𝑟𝑚𝐶𝐷𝑓(C, 0.92, 1, 0) = 1.751 

10400 ± 1.751(1050/√25) = [𝟏𝟎𝟎𝟑𝟐,𝟏𝟎𝟕𝟔𝟕. 𝟕] 
 

(Q5c) If the water company repeated the random 

sampling process with 92% CI calculations from 

(Q5b) a total of 50 times, how many intervals 

would you expect to contain true pop. mean? 
 

92%𝑜𝑓50 = 0.92 × 50 = 𝟒𝟔 of the CI intervals 

as the 92% refers to the 92% chance that the 

population mean is contained in the interval. 
 

(Q6) The waiting time at the drive thru of a fast 

food restaurant is normally distributed with a 

mean waiting time of 5 mins and S.D. 3 mins. 
 

(Q6a) A sample of 150 customers were taken 

and had a mean wait time of 6 mins. Is this 

sample significantly different at the 5% level? 
 

5% level → 95%𝐶𝐼 → 𝑧 = 1.96 

5 − 1.96(3/√150) ≤ �̅� ≤ 5 + 1.96(3/√150) 
 

Hence, the 95% CI is [𝟒. 𝟒𝟔𝟑𝟐, 𝟓. 𝟓𝟑𝟔𝟖] which 
does not contain the sample mean, therefore 
there is a significant difference at the 5% level. 
 

ST ATIS TIC AL INFERENC E  
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